925 resultados para arsenite, leiteite, reinerite, Raman Spectroscopy, single crystal
Resumo:
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (MLCT)-M-3. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi* orbital upon excitation are evident by the upward shift of v(Cequivalent toO) vibrations and a downward shift of the ketone v(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (MLCT)-M-3 excited state is indicated by time-resolved visible and resonance Raman (TR3) spectra that show features typical of bopy(.-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (MLCT)-M-3 excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of v(Cequivalent toO) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)](PF6CH3CN)-C-. has been determined.
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).
Resumo:
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.
Resumo:
Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
The IR and ligand field spectra and the structure of the mixed-ligand compound [N,N-dimethyl-N′-ethyl-1,2-diaminoethane(1-phenyl-1,3-butanedionato)(perchlorato)copper(II)]), [Cu(dmeen)bzac(OClO3)], are reported. The structure was determined by single crystal X-ray diffraction analysis (triclinic, space group ). The structure is square pyramidal with the apical position occupied by one oxygen of the tetrahedral perchlorato group (distance from copper 2.452(5) Å). The plane of the phenyl ring is tilted forming an angle of 16.72(14)° with the plane of the β-dionato moiety. The nitrogenous base adopts the gauche conformation with torsional angle of 108.72(14)°. The ethyl group is cis oriented relative to the phenyl group, occupying the equatorial position with the vector of the carbon-nitrogen bond forming an angle of 143.9(3)° with the CuNN plane. The interactions of the adjacent axial hydrogen with an oxygen of the perchlorato group result in hydrogen bond formation. The IR spectra reveal that in the solid state the Br− or Cl− displace easily the ClO4− group. The shifts in the ligand field spectra indicate that polar solvents participate in donor-acceptor interactions with the metal centre along an axis perpendicular to the CuN2O2 plane.
Resumo:
The clusters [Fe3(CO)11(RCN)] (1: R = Me, C3H5, C6H5, or C6H4-2-Me) have been prepared at low temperature from [Fe3(CO)12] and RCN in the presence of Me3NO. Compounds 1 react essentially quantitatively with a wide range of two-electron donors, L, (viz.: CO, PPh3, P(OMe)3, PPh2H, PPh2Me, PF3, CyNC (Cy = cyclohexyl), P(OEt)3, SbPh3, PBu3, AsPh3, or SnR2 (R = CH(SiMe3)2)) to give [Fe3(CO)11L] (2). In some cases (2), on treatment with Me3NO and then L′ (L′ = a second two-electron donor) yields [Fe3(CO)10LL′] in high yield. The crystal and molecular structures of 1 (L = NCC6H4Me-2) have been determined by a full single crystal structure analysis, and shown to have an axial nitrile coordinated at the unique iron atom, with two CO groups bridging the other two metal atoms.
Resumo:
A 1H NMR study of monosubstituted η-cyclopentadienyl-rhodium(I) complexes of type LLRh(C5H4X) and -iridium(I) complexes of type L2Ir(C5H4X) (L = ethene, LL = 1,3- or 1,5-diolefin; X = C(C6H5)3, CHO, or COOCH3) has been carried out. For complexes of both metals in which the neutral ligand is ethene or a non-conjugated diolefin the NMR spectra of the cyclopentadienyl protons are unusual in that H(2), H(5) resonate to high field either at room temperature or below. The corresponding NMR spectra for the cyclopentadienyl ring protons of complexes where the neutral ligand is a conjugated diene are, with one exception, normal. A single crystal X-ray structural analysis of (η4-2,4-dimethylpenta-1,4-diene)(η5-formylcyclopentadienyl)rhodium(I) (which exhibits an abnormal 1H NMR spectrum) reveals substantial localisation of electron density in the C(3)C(4) Cp ring bond (1.283(33) Å) which may be consistent with a contribution from an ‘allyl-ene’ rotamer to the ring—metal bonding scheme. An extended Hückel calculation with self consistent charge iteration was performed on this complex. The results predict a greater Mulliken overlap population for the C(3)C(4) bond in the cyclopentadienyl ring and show that the localisation is dependent on both the Cp ring substituent and the nature of the diolefin. The mass spectral fragmentation patterns of some representative diene complexes of iridium(I) and rhodium(I) are presented.
Resumo:
Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
The compounds trans-[PtBr{C(C10H15)CH2}(PEt3)2](1)(C10H15= adamant-1-yl), trans-[MBr{C(C10H7)CMe2}(PEt3)2][M = Pd (2) or Pt (3); C10H7= naphth-1-yl], and trans-[MBr{C(Ph)CMe2}(PEt3)2][M = Pd (4) or Pt (5)] have been prepared from Grignard [for (2) and (3)] or lithium reagents [for (1), (4), and (5)] and appropriate dichlorobis(phosphine)metal derivatives. Full single-crystal X-ray data are reported for (1) and (3), and reveal unusually long Pt–C(sp2) bonds. Insertion reactions into these M–C bonds occur with MeNC [for (1), (3), and (5)], and with CO [for (1) and (3)]; the latter, the first reported insertion into a Pt–C(sp2) bond, occurs under mild conditions as expected for the abnormally long M–C bonds.
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
A penta-nuclear. star-shaped hetero-metallic compound containing a unique Ni4KO8 core has been synthesized. The X-ray single crystal structure analysis reveals that in the complex, [K(Ni(LH)(2))(4)(OH2)(8)](Br)(ClO4)(8)center dot 11H(2)O (LH=(CH3)(2)HN+(CH2)(3)N=CHC6H4O-) the eight coordinate central K+ ion is encapsulated by four terminal [Ni(LH)(2)](2+) units through the double water bridges between K+ and each Ni(II) ions.
Resumo:
This work reports the ligational behavior of the neutral bidentate chelating molecule 2-(3,5-dimethyl pyrazol-1-yl) benzothiazole towards the oxomolybdenum(V) center. Both mononuclear complexes of the type (MoOX3L)-O-V and binuclear complexes of the formula (Mo2O4X2L2)-O-V (where X = Cl, Br) are isolated in the solid state. The complexes are characterized by elemental analyses, various spectroscopic techniques (UV-Vis IR), magnetic susceptibility measurement at room temperature, and cyclic voltammetry for their redox behavior at a platinum electrode in CH3CN. The mononuclear complexes (MoOX3L)-O-V are found to be paramagnetic while the binuclear complexes Mo2O4X2L2 are diamagnetic. Crystal and molecular structure of the ligand and the dioxomolybdenum complex (MoO2Br2L)-O-VI (obtained from the complex MoOBr3L during crystallization) have been solved by single crystal X-ray diffraction technique. Relevant DFT calculations of the ligand and the complex (MoO2Br2L)-O-VI are also carried out.