856 resultados para anionic trash
Resumo:
Protoporphyrin (Pp IX) derivatives were prepared to study the relationship between photosensitizer structure and photoactivity, with an emphasis on understanding the role of membrane interactions in the efficiency of photosensitizers used in photodynamic therapy (PDT). The synthetic strategies described here aimed at changing protoporphyrin periferic groups, varying overall charge and oil/water partition, while maintaining their photochemical properties. Three synthetic routes were used: (1) modification of Pp IX at positions 3(1) and 8(1) by addition of alkyl amine groups of different lengths (compounds 2-5), (2) change of Pp IX at positions 13(3) and 17(3), generating alkyl amines (compounds 6 and 7), a phosphate amine (compound 8), and quarternary ammonium compounds (compounds 9 and 10), and (3) amine-alkylation of Hematoporphyrin IX (Hp IX) at positions 3(1), 8(1), 13(3) and 17(3) (compound 12). Strategy 1 leads to hydrophobic compounds with low photocytotoxicity. Strategy 2 leads to compounds 6-10 that have high levels of binding/incorporation in vesicles, mitochondria and cells, which are indicative of high bioavailability. Addition of the phosphate group (compound 8), generates an anionic compound that has low liposome and cell incorporation, plus low photocytotoxicity. Compound 12 has intermediate incorporation and photocytotoxic properties. Compound modification is also associated with changes in their sub-cellular localization: 30% of 8 (anionic) is found in mitochondria as compared to 95% of compound 10 (cationic). Photocytotoxicity was shown to be highly correlated with membrane affinity, which depends on the asymmetrical and amphiphilic characters of sens, as well as with sub-cellular localization.
Resumo:
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.
Resumo:
The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The proposed method for the identification of adulteration was based on the controlled acid hydrolysis of xylan and starch present in some vegetable adulterants, followed by the analysis of the resulting xylose and glucose, which are the monosaccharides that compose, respectively, the two polysaccharides. The acid hydrolysis with HCl increases the ionic strength of the sample, which impairs the electrophoretic separation. Thus, a neutralization step based on anion exchange resin was necessary. The best separations were obtained in NaOH 80 mmol/L, CTAB 0.5 mmol/L, and methanol 30% v/v. Because of the high value of pH, monosaccharides are separated as anionic species in such running electrolyte. The LOQ for both monosaccharides was 0.2 g for 100 g of dry matter, which conforms to the tolerable limits.
Resumo:
The dideprotonation of 4-(4-nitrophenylazo)resorcinol generates an anionic species with substantial electronic pi delocalization. As compared to the parent neutral species, the anionic first excited electronic transition, characterized as an intramolecular charge transfer (ICT) from the CO(-) groups to the NO(2) moiety, shows a drastic red shift of ca. 200 nm in the lambda(max) in the UV-vis spectrum, leading to one of the lowest ICT energies observed (lambda(max) = 630 nm in dimethyl sulfoxide (DMSO)) in this class of push-pull molecular systems. Concomitantly, a threefold increase in the molar absorptivity (epsilon(max)) in comparison to the neutral species is observed. The resonance Raman enhancement profiles reveal that in the neutral species the chromophore involves several modes, as nu(C-N), nu(N=N), nu(C=C) and nu(s)(NO(2)), whereas in the dianion, there is a selective enhancement of the NO(2) vibrational modes. The quantum chemical calculations of the electronic transitions and vibrational wavenumbers led to a consistent analysis of the enhancement patterns observed in the resonance Raman spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The anionic complexes [Cu(L(1-))(3)](1-), L(-) = dopasemiquinone or L-dopasemiqui none, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the vCC + vCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g= 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the determination of ciclopirox olamine in pharmaceutical formulations using capillary electrophoresis with capacitively coupled contactless conductivity detection. In an alkaline medium, ciclopirox olamine is converted into an anionic species and its detection is possible in capillary electrophoresis with capacitively coupled contactless conductivity detection without an electroosmotic flow modifier, because it is a low-mobility species. A linear working range from 2.64 to 264 mu g/mL in sodium hydroxide electrolyte as well as low detection limit (0.39 mu g/mL) and a good repeatability (RSD = 3.4% for 264 mu g/mL ciclopirox solution (n = 10)) were achieved. It was also possible to determine olamine in its cationic form when acetic acid was used as the electrolyte solution. The results obtained include a linear range from 26.4 to 184.8 mu g/mL and a detection limit of 2.6 mu g/mL olamine. The proposed methods were applied to the analysis of commercial pharmaceutical products and the results were compared with the values indicated by the manufacturer as well as those obtained using a titrimetric method recommended by American Pharmacopoeia.
Resumo:
Time-dependent fluctuations in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode immersed in diluted solutions of rhodamine 6G (R6G) and congo red (CR). These fluctuations were attributed to a small number of SERS-active molecules probing regions of extremely high electromagnetic field (hot spots) at the nanostructured surface. The time-dependent distribution of SERS intensities followed a tailed statistics at certain applied potentials, which has been linked to single-molecule dynamics. The shape of the distribution was reversibly tuned by the applied voltage. Mixtures of both dyes, R6G and CR, at low concentrations were also investigated. Since R6G is a cationic dye and CR is an anionic dye, the statistics of the SERS intensity distribution of either dye in a mixture were independently controlled by adjusting the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field. This interpretation was supported by a two-dimensional Monte Carlo simulation that took into account the time evolution of the surface configuration of the adsorbed species and their probability to populate a hypothetical hot spot. The potential-controlled SERS dynamics reported here is a first step toward the spectroelectrochemical investigation of redox processes at the single-molecule level by SERS.
Resumo:
This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the efficiency of polyacrylamides for natural organic matter (NOM) removal from Paraiba do Sul River (Brazil) raw water for drinking purposes. Jar tests were performed following an experimental design protocol. Three kinds of polyacrylamides (anionic, cationic, and non-ionic) at 0.2 mg L(-1) were tested. After coagulation, turbidity, DOC, UVA(254) and SCAN (UV-absorbing material) were determined. Color and pH were also measured. It was found that polyacrylamides did not reduce the amounts of alum and lime needed in the process and that the amount of alum alone for removing UV-absorbing organic matter is significantly higher. Efficiency of the coagulation process decreased as follows: non-ionic -> cationic -> anionic -> no polyacrylamide. Removal efficiencies for the best case were: 100%, 90%, 83%, and 68% for turbidity, DOC, UVA(254), and SCAN, respectively.
Resumo:
In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.
Resumo:
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
The ability of macroheterocyclic compounds to complex with ionic species has led to the synthesis and investigation of many multidentate macroheterocyclic species. The most stable complexes are formed between macrocyclic polyetheral ligands (crown ethers) with alkali or alkaline earth metal iona. There is an excellent correlation of the stability of these complexes with the size of the cation and the site of the cavity in the macrocyclic ligand. Additional factors, such as the basicity of the ligand and the solvating ability of the solvent, also play important roles in the stabilization of the complex. The stability of such complexes has been advantageously used to increase anionic reactivity and has been successfully applied to several organic fluorinations, oxidations, and similar reactions. The use of macrocyclic ligands in inorganic syntheses of otherwise difficult to obtain fluoro compounds has not been reported. O-carborane and m-carborane, C2BlOHl2, are icosahedral cage systems derived from Bl2H122- by replacement of BH with the isoelectronic CH group. These stable molecules exhibit electron-deficient bonding which can best be explained by delocalization of electrons. This delocalization gives rise to stability similar to that found in aromatic hydrocarbons. Crown ether activated potassium fluoride has been successfully employed in the conversion of alkyl, acyl and aryl halides to their respective fluorides. Analogously halide substituted carboranes were prepared, but their fluoro-derivatives were not obtained. The application of crown ethers in the synthesis of transition metal complexes is relatively unexplored. The usual synthesis of fluoro-derivative transition metal complexes involves highly reactive and toxic fluorinating agents such as antimony trifluoride, antimony penta fluoride. bromine trifluoride and hydrogen fluoride, An attempted preparation of the hexafluoroosmate (IV) ion via a crown activated, or naked fluoride~was unsuccessful. Potassium hexafluoroosmate (IV), K208F6. was eventually prepared using bromine trifluoride as a fluorinating and oxidizing agent .