924 resultados para amphiphilic copolymers, block copolymers, statistical copolymers, inverse emulsions, micelles
Resumo:
The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.
Resumo:
Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, IH-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly( ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Prepolymers of poly(ethylene oxide) (Pre-PEG) were synthesized by reacting azoisobutyronitrile (AIBN) with poly(ethylene glycol) (PEG), and their structures were characterized by IR and UV. The molecular weight of pre-PEG was related to the feed ratio and reaction time. These prepolymers can be used to prepare block copolymers - poly(ethylene oxide)-block-poly(butyl acrylate) (PEO-b-PBA) by radical polymerization in the presence of butyl acrylate (BA). Solution polymerization was a suitable technique for this step. The yield and the molecular weight of the product were related to the ratio of the prepolymer to BA, the reaction time, and temperature. GPC showed that the molecular weight increased with a higher ratio of BA to pre-PEO. The intrinsic viscosity of the copolymers was only slightly dependent on reaction time, but decreased at higher reaction temperatures, as did the amount of PEA homopolymer. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A new amphiphilic polymer i.e., polyethylene glycol (PEG) grafted crystalline neoprene, which was used as compatibilizer to improve the compatibility of elastomer and water-absorbent resin, has been investigated. The synthesis was based on the reaction between chlorine in neoprene and sodium salts of PEG. PEGs with molecular weights of 600 and 2000 were used. The grafting percent and the PEG content were calculated through elemental analysis of chlorine in the resulted copolymers. The maximum grafting percent of copolymers was ca. 24.80%. The molecular parameters such as number-average molecular weight and the average number of grafting chains on one CR backbone were also calculated and discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadienestyrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Studies using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction showed correlations between the crystallization behavior of the polydimethylsiloxane (PDMS) block and the morphology of the block copolymer poly (butadiene-b-dimethylsiloxane) (PB-PDMS). When the PDMS component existed as spheres dispersed in a PB matrix, the crystallization rate of the PDMS block was lower than when the PDMS phase existed in rod or cylinder form.
Resumo:
XPS has extensively been applied to the study of polymers, in which a considerably important topic is the surface phase separations in block copolymers and blends. Copolymers (or blends) will produce a phase separation if their components are in-
Resumo:
This thesis investigated the block copolymer (BCP) thin film characteristics and pattern formation using a set of predetermined molecular weights of PS-b-PMMA and PS-b-PDMS. Post BCP pattern fabrication on the required base substrate a dry plasma etch process was utilised for successful pattern transfer of the BCP resist onto underlying substrate. The resultant sub-10 nm device features were used in front end of line (FEoL) fabrication of active device components in integrated circuits (IC). The potential use of BCP templates were further extended to metal and metal-oxide nanowire fabrication. These nanowires were further investigated in real-time applications as novel sensors and supercapacitors.
Insertion of metal oxides into block copolymer nanopatterns as robust etch masks for nanolithography
Resumo:
Directed self-assembly (DSA) of block copolymers (BCPs) is a prime candidate to further extend dimensional scaling of silicon integrated circuit features for the nanoelectronic industry. Top-down optical techniques employed for photoresist patterning are predicted to reach an endpoint due to diffraction limits. Additionally, the prohibitive costs for “fabs” and high volume manufacturing tools are issues that have led the search for alternative complementary patterning processes. This thesis reports the fabrication of semiconductor features from nanoscale on-chip etch masks using “high χ” BCP materials. Fabrication of silicon and germanium nanofins via metal-oxide enhanced BCP on-chip etch masks that might be of importance for future Fin-field effect transistor (FinFETs) application are detailed.
Resumo:
A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.
Resumo:
Les acides biliaires sont reconnus comme des tensioactifs d’origine biologique potentiellement applicables dans le domaine pharmaceutique. Leurs structures en font une plateforme idéale pour l’obtention de nouvelles architectures polymères. Des composés synthétisés par polymérisation anionique de dérivés d’oxirane comme l’oxyde d’éthylène, offre des dérivés amphiphiles pegylés démontrant des propriétés d’agrégation intéressantes en vue d’une amélioration de la biocompatibilité et de la capacité d’encapsulation médicamenteuse. Une large gamme d’acides biliaires pegylés (BA(EGn)x) a été préparée avec comme objectif premier leurs applications dans la formulation de principes actifs problématiques. Pour cela, une caractérisation rigoureuse du comportement de ces dérivés (modulation de la longueur (2 < n < 19) et du nombre de bras (2 < x < 4) de PEG) en solution a été réalisée. Dans le but d’améliorer la biodisponibilité de principes actifs lipophiles (cas de l’itraconazole), des nanoémulsions spontanées, composées de BA(EGn)x et d’acide oléique, ont été développées. L’évaluation in vitro, de la toxicité (cellulaire), et de la capacité de solubilisation des systèmes BA(EGn)x, ainsi que les paramètres pharmacocinétiques in vivo (chez le rat), suggèrent une livraison contrôlée par nos systèmes auto-assemblés lors de l’administration orale et intraveineuse. Aussi, la synthèse de copolymères en blocs en étoile à base d’acide cholique pegylés a été effectuée par polymérisation anionique par addition d’un second bloc au caractère hydrophobe de poly(éther d’allyle et de glycidyle) (CA(EGn-b-AGEm)4). Selon le ratio de blocs hydrophiles-hydrophobes CA(EGn-b-AGEm)4, des réponses thermiques en solution (LCST) ont été observées par un point de trouble (Cp) entre 8 oC et 37 oC. Un mécanisme de formation d’agrégats en plusieurs étapes est suggéré. La thiolation des allyles des PAGE permet une fonctionnalisation terminale à haute densité, comparable aux dendrimères. Les caractérisations physico-chimiques des CA(EGn-b-AGEm-NH2)4 et CA(EGn-b-AGEm-COOH)4 indiquent la formation de structures auto-assemblées en solution, sensibles à la température ou au pH. Cette fonctionnalisation élargie le domaine d’application des dérivés d’acides biliaires pegylés en étoile vers la transfection d’ADN, la livraison de siRNA thérapeutiques ou encore à une sélectivité de livraison médicamenteux (ex. sensibilité au pH, greffage ligands).
Resumo:
Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃₉-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F₈₇-b-PAA₈₀. It was observed that PAA₈₀-F₈₇-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA-b-F87-b-PAA block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH>4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F₈₇-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When CDOX <0.13mM, the PAA₈₀-F₈₇-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When CDOX >0.13mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (CDOX >0.34mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex.
Resumo:
We study the structure and shear flow behavior of a side-on liquid crystalline triblock copolymer, named PBA-b-PA444-b-PBA (PBA is poly(butyl acrylate) and PA444 is a poly(acrylate) with a nematic liquid crystal side-on mesogen), in the self-assembled lamellar phase and in the disordered phase. Simultaneous oscillatory shear and small-angle X-ray scattering experiments show that shearing PBA-b-PA444-b-PBA at high frequency and strain amplitudes leads to the alignment of the lamellae with normals perpendicular to the shear direction and to the velocity gradient direction, i.e., in the perpendicular orientation. The order-to-disorder transition temperature (T-ODT) is independent of the applied strain, in contrast to results reported in the literature for coil-coil diblock copolymers, which show an increase in T-ODT with shear rate. It is possible that in our system, T-ODT does not depend on the applied strain because the fluctuations are weaker than those present in coil-coil diblock copolymer systems.