988 resultados para amorphous silicon
Resumo:
An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.
Resumo:
In this paper, we report on a metal-catalyst-free synthesis of carbon nanotubes (CNTs) on a pre-patterned Si(001) surface. Arrays of triangular-shaped holes were created by nanoindentation in specific sites of the sample. After germanium deposition and chemical vapor deposition (CVD) of acetylene, a few CNTs nucleated and grew from germanium nanoparticles. These results illustrate that it is possible to control the growth of CNTs without the use of any metal catalyst. By leading the assembly of Ge nanoparticles with a patterning technique, a precise control over the growth order is also attainable.
Resumo:
The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.
Resumo:
Molecular dynamics (MD) simulations have been employed to investigate the single-crystal Si properties with different pre-existing cavities under nanoindentation. Cavities with different radii and positions have been considered. It is found that pre-existing cavities in the Si substrate would obviously influence the mechanical properties of Si under nanoindentation. Furthermore, pre-existing cavities would absorb part of the strain energy during loading and then release during unloading. It would decrease plastic deformation to the substrate. Particularly, the larger of the cavity or the nearer of the cavity to the substrate’s top surface, the larger decrease of Young’s modulus and hardness is usually observed. Just as expected, the larger offset of the cavity in the lateral direction, the less influence is usually seen.
Resumo:
Plasma enhanced chemical vapour deposition silicon nitride thin films are widely used in microelectromechanical system devices as structural materials because the mechanical properties of those films can be tailored by adjusting deposition conditions. However, accurate measurement of the mechanical properties, such as hardness, of films with thicknesses at nanometric scale is challenging. In the present study, the hardness of the silicon nitride films deposited on silicon substrate under different deposit conditions was characterised using nanoindentation and nanoscratch deconvolution methods. The hardness values obtained from the two methods were compared. The effect of substrate on the measured results was discussed.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
Authigenic illite-smectite and chlorite in reservoir sandstones from several Pacific rim sedimentary basins in Australia and New Zealand have been examined using an Electroscan Environmental Scanning Electron Microscope (ESEM) before, during, and after treatment with fresh water and HCl, respectively. These dynamic experiments are possible in the ESEM because, unlike conventional SEMs that require a high vacuum in the sample chamber (10-6 torr), the ESEM will operate at high pressures up to 20 torr. This means that materials and processes can be examined at high magnifications in their natural states, wet or dry, and over a range of temperatures (-20 to 1000 degrees C) and pressures. Sandstones containing the illite-smectite (60-70% illite interlayers) were flushed with fresh water for periods of up to 12 hours. Close examination of the same illite-smectite lines or filled pores, both before and after freshwater treatments, showed that the morphology of the illite-smectite was not changed by prolonged freshwater treatment. Chlorite-bearing sandstones (Fe-rich chlorite) were reacted with 1M to 10M HCl at temperatures of up to 80 degrees C and for periods of up to 48 hours. Before treatment the chlorites showed typically platy morphologies. After HCl treatment the chlorite grains were coated with an amorphous gel composed of Ca, Cl, and possibly amorphous Si, as determined by EDS analyses on the freshly treated rock surface. Brief washing in water removed this surface coating and revealed apparently unchanged chlorite showing no signs of dissolution or acid attack. However, although the chlorite showed no morphological changes, elemental analysis only detected silicon and oxygen.
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
Matrix metalloproteinases (MMPs) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness (EOT) over the time. We investigate the effect of surface functionalisation on the stability of pSi surface and evaluate the sensing performance. We successfully demonstrate MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.
Resumo:
Sandy soils have low nutrient holding capacity and high water conductivity. Consequently, nutrients applied as highly soluble chemical fertilisers are prone to leaching, particularly in heavily irrigated environments such as horticultural soils and golf courses. Amorphous derivatives of kaolin with high cation exchange capacity may be loaded with desired nutrients and applied as controlledrelease fertilisers. Kaolin is an abundant mineral, which can be converted to a meso-porous amorphous derivative (KAD) using facile chemical processes. KAD is currently being used to sequester ammonium from digester effluent in sewage treatment plants in a commercial environment. This material is also known in Australia by the trade name MesoLite. The ammonium-saturated form of KAD may be applied to soils as a nitrogen fertiliser. Up to 7% N can be loaded onto KAD by contacting it with high-ammonia concentration wastewater from sewerage treatment plants. This poster paper demonstrates plant uptake of nitrogen from KAD and compares its efficiency as a fertiliser with NH4SO4. Rye grass was grown in 1kg pots in a glass-house. Nitrogen was applied at a range of rates using NH4SO4 and two KAD materials carrying 7% and 3% nitrogen, respectively. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks. Dry mass and N concentrations were determined by standard methods. At all N application rates, ammonium-loaded KAD produced significantly higher plant mass than for NH4SO4. The lower fertiliser effectiveness of NH4SO4 is attributed to possible loss of some N through volatilisation. Of the two KAD types, the material with lower CEC value supported slightly higher plant yields. The KAD materials did not show any adverse effect on availability of trace elements, as evidenced by lack of deficiency symptoms and plant analyses. Clearly, nitrogen loaded on to KAD in the form of ammonium is likely to be protected from leaching, but is still available to plants. These data suggest that KAD-based fertilisers may be suitable substitutes for water soluble N, K and other cation fertilisers for leaching soils.
Resumo:
The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.