852 resultados para amine light stabilizers
Resumo:
PURPOSE: This study aims to identify which aspects of the pupil light reflex are most influenced by rods and cones independently by analyzing pupil recordings from different mouse models of photoreceptor deficiency. METHODS: One-month-old wild type (WT), rodless (Rho-/-), coneless (Cnga3-/-), or photoreceptor less (Cnga3-/-; Rho-/- or Gnat1-/-) mice were subjected to brief red and blue light stimuli of increasing intensity. To describe the initial dynamic response to light, the maximal pupillary constriction amplitudes and the derivative curve of the first 3 seconds were determined. To estimate the postillumination phase, the constriction amplitude at 9.5 seconds after light termination was related to the maximal constriction amplitude. RESULTS: Rho-/- mice showed decreased constriction amplitude but more prolonged pupilloconstriction to all blue and red light stimuli compared to wild type mice. Cnga3-/- mice had constriction amplitudes similar to WT however following maximal constriction, the early and rapid dilation to low intensity blue light was decreased. To high intensity blue light, the Cnga3-/- mice demonstrated marked prolongation of the pupillary constriction. Cnga3-/-; Rho-/- mice had no pupil response to red light of low and medium intensity. CONCLUSIONS: From specific gene defective mouse models which selectively voided the rod or cone function, we determined that mouse rod photoreceptors are highly contributing to the pupil response to blue light stimuli but also to low and medium red stimuli. We also observed that cone cells mainly drive the partial rapid dilation of the initial response to low blue light stimuli. Thus photoreceptor dysfunction can be derived from chromatic pupillometry in mouse models.
Resumo:
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFSFR14) and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.
Resumo:
The conversion of solar energy into more useful forms of energy, such as chemical fuels or electricity, is one of the central problems facing modern science. Progress in photochemistry and chemical synthesis has led to a point where light energy conversion by means of artificial molecular devices can be rationally attempted. In this article, a general approach towards this challenging goal is presented.
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
The antimycobacterial activity of 3-(4'-bromo[1,1'-biphenyl-4-yl)-3-(4-bromo-phenyl)-N,N-dimethyl-2-propen-1-amine (BBAP), free or incorporated in preformed liposomes, on extracellular M. tuberculosis H37Rv was 8 and 25 μM (MIC), respectively. Extracellular antimycobacterial activity was not significantly improved by entrapment of BBAP in liposomes, but there was a 6.1-fold reduction of BBAP cytotoxicity on J774 macrophages. Liposomal BBAP or its free form showed IC50 values of 165 and 27 μM, resulting in a selectivity index (SI=IC50/MIC) of 3.4 and 6.6, respectively. Free BBAP in concentrations from 10 to 80 μM were quite effective in eliminating intracellular M. tuberculosis while liposomal formulation was less effective at these concentrations.
Resumo:
In this work, TiO2 photocatalysis was used to disinfect domestic wastewaters previously treated by different biological treatment systems: Upward-flow Anaerobic Sludge Blanket (UASB), facultative pond, and duckweed pond. The microorganisms monitored were E. coli, total coliforms, Shigella species, and Salmonella species. Photocatalytic experiments were carried out using two light sources: a solar simulator (UV intensity: 68-70 W m-2) and black-light lamps (BLL UV intensity: 17-20 W m-2). Samples were taken after each treatment stage. Results indicate that bacterial photocatalytic inactivation is affected by characteristics of the effluent, including turbidity, concentration of organic matter, and bacterial concentration, which depend of the type of biological pretreatment previously used.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
Mülliken charges on nitrogen atoms were calculated for several arylamines, utilizing the AM1 Quantum Chemistry method, relating their values to experimental amine pKa . Direct relation between pKa and nitrogen charges was found. The amines energies of protonation, calculated by the same method, also correlate directly with these charges.
Resumo:
Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Resumo:
Fungi require special substrates for their isolation, vegetative growth and sporulation. In experiments conducted in the laboratory, the influence of substrates, light, filter paper and pH on the sporulation of Cercospora sojina conidia, the causal agent of soybean frogeye leaf spot, was assessed. The media potato sucrose agar, V-8 agar, tomato extract agar, soybean leaf extract agar, soybean seed extract agar, soybean meal agar, soybean flour agar and wheat flour agar were tested, added on the surface, with and without filter paper and under two light regimes, with 12 h light at 25°± 2°C and in the dark. A triple factorial 8x2x2 (substrates x light/dark x with/without filter paper) design with four replicates was used. V-8 agar medium was employed and the pH was adjusted with HCl 0.1N or NaOH 0.1N before autoclaving to the values: 3, 4, 5, 6, 7 and 8, and the pH of V-8 agar medium is 6.7. The evaluation was done on the seventh day of incubation. Data underwent regression analysis. Sporulation was maximized on the agar media V-8, seed extract, oat flour, tomato extract, and potato sucrose in the presence of filter paper and 12h light. On V-8 medium, maximal sporulation was obtained with pH 6.7.
Resumo:
Four levels of shading (full sunlight (0%), 30, 50, 70% of solar radiation interception on growth, chlorophyll concentration and photosynthetic rate were studied in Croton urucurana Baill., a pioneer plant species. This species seedlings are of potential interest for reforestation projects and recovery of degraded areas. The seedlings were grown in pots containing soil and sand (2:1) and later transferred to plastic bags of 3 dm³ and submitted to different levels of shading (30, 50, 70%) of solar radiation and full sunlight, as control. The experimental design was completely randomized with five replicates and each experimental unit was composed of five plants. The results suggest that plants submitted to 70% shading showed higher dry weight accumulation in leaf and root, and higher plant height and leaf area. However, the seedlings root system showed higher dry biomass under full sunlight. It was observed a tendency to increase chlorophyll concentration and to decrease photosynthetic rate with the increase of the shading level.