955 resultados para algebraic bethe-ansatz
Resumo:
The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.
Resumo:
In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.
Resumo:
A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.
Resumo:
We give a simple linear algebraic proof of the following conjecture of Frankl and Furedi [7, 9, 13]. (Frankl-Furedi Conjecture) if F is a hypergraph on X = {1, 2, 3,..., n} such that 1 less than or equal to /E boolean AND F/ less than or equal to k For All E, F is an element of F, E not equal F, then /F/ less than or equal to (i=0)Sigma(k) ((i) (n-1)). We generalise a method of Palisse and our proof-technique can be viewed as a variant of the technique used by Tverberg to prove a result of Graham and Pollak [10, 11, 14]. Our proof-technique is easily described. First, we derive an identity satisfied by a hypergraph F using its intersection properties. From this identity, we obtain a set of homogeneous linear equations. We then show that this defines the zero subspace of R-/F/. Finally, the desired bound on /F/ is obtained from the bound on the number of linearly independent equations. This proof-technique can also be used to prove a more general theorem (Theorem 2). We conclude by indicating how this technique can be generalised to uniform hypergraphs by proving the uniform Ray-Chaudhuri-Wilson theorem. (C) 1997 Academic Press.
Resumo:
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
Resumo:
We study muon-spin rotation (mu SR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi2+xSr2-xCaCu2O8+delta (BSCCO), by modeling the fluid and solid phases of pancake Vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of mu SR line shapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid-state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the mu SR data for BSCCO in this regime can be obtained through the ansatz that this ''phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ''pinned liquid'' or ''glassy'' state of pancake Vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of mu SR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations. [S0163-1829(99)08033-9].
Resumo:
A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.
Resumo:
‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.
Resumo:
We present a magnetic study of the insulating perovskite LaMn1-xTixO3+delta (0
Resumo:
The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Resumo:
In this article, finite-time consensus algorithms for a swarm of self-propelling agents based on sliding mode control and graph algebraic theories are presented. Algorithms are developed for swarms that can be described by balanced graphs and that are comprised of agents with dynamics of the same order. Agents with first and higher order dynamics are considered. For consensus, the agents' inputs are chosen to enforce sliding mode on surfaces dependent on the graph Laplacian matrix. The algorithms allow for the tuning of the time taken by the swarm to reach a consensus as well as the consensus value. As an example, the case when a swarm of first-order agents is in cyclic pursuit is considered.
Resumo:
To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.
Resumo:
In this paper, we present a kinematic theory for Hoberman and other similar foldable linkages. By recognizing that the building blocks of such linkages can be modeled as planar linkages, different classes of possible solutions are systematically obtained including some novel arrangements. Criteria for foldability are arrived by analyzing the algebraic locus of the coupler curve of a PRRP linkage. They help explain generalized Hoberman and other mechanisms reported in the literature. New properties of such mechanisms including the extent of foldability, shape-preservation of the inner and outer profiles, multi-segmented assemblies and heterogeneous circumferential arrangements are derived. The design equations derived here make the conception of even complex planar radially foldable mechanisms systematic and easy. Representative examples are presented to illustrate the usage of the design equations and the kinematic theory.