441 resultados para acyl lupeols


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"This is the complete annotated bibliography for the shorter article published in Industrial and Engineering Chemistry, vol. 51, no. 9, September 1959, part II, page 1099."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatty acids (FAs) are relatively small, hydrophobic and highly mobile molecular structures with vital biological functions and a ubiquitous distribution. Surprisingly, however, they can be rendered immunogenic. We have synthesised a novel immunogen in which dicarboxylic linoleic acid was conjugated to a carrier protein. Dicarboxylic fatty acids (DCA) differ from their normal counterparts only by their possession of a carboxyl group at each end of the molecule. When conjugated to proteins as haptens, they are, therefore, presented to the immune system with a free carboxyl group at the distal end, instead of a methyl group. Polyclonal IgG antibodies raised in response to this unique immunogen could bind not only conjugated hapten with high affinity, but also the equivalent free FA in mono and dicarboxylic form. Similar conjugates constructed from normal FAs produced much weaker antibody responses and could scarcely be considered antigenic at all. The cross-reactivities of the anti-DCA antibodies with FA variants differing in the number, position and configuration of their double bonds showed that the antibody paratope (binding site) was structured to accommodate the hapten in a way that depended on the precise shape of the acyl chain. We suggest that FAs become much more effective as B-cell epitopes when presented with their hydrophilic carboxyl group exposed on the surface of immunogenic conjugates. This type of epitope is determined by the particular double bond pattern of the unsaturated acyl chain, as well as the polar head group. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Valproic acid (VPA) is a major therapeutic agent in the treatment of epilepsy and other neurological disorders. It is metabolized in humans and rats primarily along two pathways: direct glucuronidation to yield the acyl glucuronide (VPA-G) and beta-oxidation. We have shown much earlier in the Sprague-Dawley rat that i.v. administration of sodium valproate (NaVPA) caused a marked choleresis ( mean of 3.3 times basal bile flow after doses of 150 mg/kg), ascribed to the passive osmotic flow of bile water following excretion of VPA-G across the canalicular membrane. Active biliary pumping of anionic drug conjugates across the canalicular membrane is now believed to be attributable to transporter proteins, in particular Mrp2, which is deficient in the TR- ( a mutant Wistar) rat. In the present study, normal Wistar and Mrp2-deficient TR- rats were dosed i.v. with NaVPA at 150 mg/kg. In the Wistar rats, there was a peak choleretic effect of about 3.2 times basal bile flow, occurring at about 30 to 45 min postdose ( as seen previously with Sprague-Dawley rats). In TR- rats given the same i.v. dose, there was no evidence of postdose choleresis. The choleresis was correlated with the excretion of VPA-G into bile. In Wistar rats, 62.8 +/- 7.7% of the NaVPA dose was excreted in bile as VPA-G, whereas in TR- rats, only 2.0 +/- 0.6% of the same dose was excreted as VPA-G in bile ( with partial compensatory excretion of VPA-G in urine). This study underlines the functional ( bile flow) consequences of biliary transport of xenobiotic conjugated metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To identify differentially expressed genes in synovial fibroblasts and examine the effect on gene expression of exposure to TNF-alpha and IL-1beta. Methods. Restriction fragment differential display was used to isolate genes using degenerate primers complementary to the lysophosphatidic acid acyl transferase gene family. Differential gene expression was confirmed by reverse transcription-polymerase chain reaction and immunohistochemistry using a variety of synovial fibroblasts, including cells from patients with osteoarthritis and self-limiting parvovirus arthritis. Results. Irrespective of disease process, synovial fibroblasts constitutively produced higher levels of IL-6 and monocyte chemoattractant protein 1 (MCP-1) (CCL2) than skin fibroblasts. Seven genes were differentially expressed in synovial fibroblasts compared with skin fibroblasts. Of these genes, four [tissue factor pathway inhibitor 2 (TFPI2), growth regulatory oncogene beta (GRObeta), manganese superoxide dismutase (MnSOD) and granulocyte chemotactic protein 2 (GCP-2)] were all found to be constitutively overexpressed in synoviocytes derived from patients with osteoarthritis. These four genes were only weakly expressed in other synovial fibroblasts (rheumatoid and self-limiting parvovirus infection). However, expression in all types of fibroblasts was increased after stimulation with TNF-alpha and IL-1beta. Three other genes (aggrecan, biglycan and caldesmon) were expressed at higher levels in all types of synovial fibroblasts compared with skin fibroblasts even after stimulation with TNF-alpha and IL-1. Conclusions. Seven genes have been identified with differential expression patterns in terms of disease process (osteoarthritis vs rheumatoid arthritis), state of activation (resting vs cytokine activation) and anatomical location (synovium vs skin). Four of these genes, TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6), were selectively overexpressed in osteoarthritis fibroblasts rather than rheumatoid fibroblasts. While these differences may represent differential behaviour of synovial fibroblasts in in vitro culture, these observations suggest that TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6) may represent new targets for treatments specifically tailored to osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to systematically investigate the effect of lipid chain length and number of lipid chains present on lipopeptides on their ability to be incorporated within liposomes. The peptide KAVYNFATM was synthesized and conjugated to lipoamino acids having acyl chain lengths of C-8, C-12 and C-16. The C-12 construct was also prepared in the monomeric, dimeric and trimeric form. Liposomes were prepared by two techniques: hydration of dried lipid films (Bangham method) and hydration of freeze-dried monophase systems. Encapsulation of lipopeptide within liposomes prepared by hydration of dried lipid films was incomplete in all cases ranging from an entrapment efficiency of 70% for monomeric lipoamino acids at a 5% (w/w) loading to less than 20% for di- and trimeric forms at loadings of 20% (w/w). The incomplete entrapment of lipopeptides within liposomes appeared to be a result of the different solubilities of the lipopeptide and the phospholipids in the solvent used for the preparation of the lipid film. In contrast, encapsulation of lipopeptide within liposomes prepared by hydration of freeze-dried monophase systems was high, even up to a loading of 20% (w/w) and was much less affected by the acyl chain length and number than when liposomes were prepared by hydration of dried lipid films. Freeze drying of monophase systems is better at maintaining a molecular dispersion of the lipopeptide within the solid phospholipid matrix compared to preparation of lipid film by evaporation, particularly if the solubility of the lipopeptide in solvents is markedly different from that of the polar lipids used for liposome preparation. Consequently, upon hydration, the lipopeptide is more efficiently intercalated within the phospholipid bilayers. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy surface connecting oxazinium olates 9, several possible conformers of ketenes 10 and 11, and the final cyclization products 12, 13 and 14, as well as the isomeric 1,3-oxazine-6-ones 15, ring opening of the latter to N-acylimidoylketenes 16, and subsequent rearrangement of 16 to oxoketenimines 17, azetinones 18, and the cyclization products 19 and 20 are evaluated computationally at the B3LYP/6-31G* and B3LYP/6-311+G*//B3LYP/6-31G* levels. The cyclizations of ketenes to oxazinium olates 9 and oxazines 15 have the characteristics of pseudopericyclic reactions. Plots of the energy vs internal reaction coordinate for the cyclization of transoid acylketenes such as 10 to 9 (via TS1) and 16 to 15 (via TS7) feature two inflection points and indicate that the part of the energy surface above the lower inflection points describe internal rotation of the acyl function in the ketene moiety, and the part below this point describes the cyclization of the cisoid ketene to the planar mesoionic oxazinium olate 9 or oxazinone 15. The 1,3-shifts of the OR group that interconvert ketenes 16 and ketenimines 17 via four-membered cyclic transition states TS8 behave similarly, the first portion (from the ketenimine side) of the activation barrier being due largely to internal rotation of substituents, and the top part being due to the 1,3-shift proper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Concentrations of antimicrobials below minimum inhibitory concentration (subMIC) may reduce the production by Pseudomonas aeruginosa of virulence factors such as elastase. We sought to determine whether the reduction in elastase production may be mediated by a reduction in acyl-homoserine lactones. Methods: Pseudomonas aeruginosa in broth was exposed to three conditions for ceftazidime and tobramycin: control, 6% MIC and 25% MIC. Elastase was assayed using elastin congo red. N-(3-Oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl-homoserine lactone (C4-HSL) were assayed using biosensor Escherichia coli. Results: Elastase was unchanged with ceftazidime. Elastase was reduced by 16% at 6% MIC tobramycin and reduced by 70% at 25% MIC tobramycin (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing incidence x-ray-diffraction investigations of the structures of Langmuir-Blodgett films of cadmium behenate with 1, 2, 3, 5, and 21 monolayers are reported. The single monolayer film, deposited on a hydrophilic substrate, showed a hexagonal structure, whereas the bilayer film, deposited on a hydrophobic substrate, had a rectangular structure with herringbone orientation of the acyl chains. With multilayer films formed on a hydrophilic substrate, it was possible to detect that the hexagonal structure of the first layer was retained when additional layers were deposited and that the additional layers had the same rectangular structure as the bilayer. (c) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dibenzoylketene 5 undergoes degenerate 1,3-shifts of the phenyl group between acyl and ketene carbon atoms, thus interconverting it with 6 and 7. This 1,3-shift takes place in the gas phase under flash vacuum thermolysis (FVT) conditions, but not in solution at 110-145 degrees C. Imidoyl(benzoyl)ketene 13 undergoes degenerate 1,3-shift of the phenyl group on FVT, thus interconverting it with 14, but the ketenimine isomer 15 is not formed, and none of these shifts take place in the solid state at 250 degrees C. Imidoyl(p-toluoyl)ketene 21 undergoes a 1,3-p-tolyl shift, interconverting it with ketene 22 but not with ketenimine 23. The imidoyl(p-toluoyl)ketene rotamer 25 cyclizes to 4-toluoyloxyquinoline 28 and 4-quinolone 29. The cyclization of imidoyl(benzoyl)ketene 13 to 4-benzoyloxyquinoline 18, and of 25 to 28 involves 1,3-C-to-O shifts of benzoyl (toluoyl) groups. Calculations of the transition states for the transformations at the B3LYP/6-31G** level of theory are in agreement with the observed reaction preferences.