962 resultados para action potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial reperfusion injury is associated with the infiltration of blood-borne polymorphonuclear leukocytes. We have previous described the protection afforded by annexin 1 (ANXA1) in an experimental model of rat myocardial ischemia-reperfusion (IR) injury. We examined the 1) amino acid region of ANXA1 that retained the protective effect in a model of rat heart IR; 2) changes in endogenous ANXA1 in relation to the IR induced damage and after pharmacological modulation; and 3) potential involvement of the formyl peptide receptor (FPR) in the protective action displayed by ANXA1 peptides. Administration of peptide Ac2-26 at 0, 30, and 60 min postreperfusion produced a significant protection against IR injury, and this was associated with reduced myeloperoxidase activity and IL-1 beta levels in the infarcted heart. Western blotting and electron microscopy analyses showed that IR heart had increased ANXA1 expression in the injured tissue, associated mainly with the infiltrated leukocytes. Finally, an antagonist to the FPR receptor selectively inhibited the protective action of peptide ANXA1 and its derived peptides against IR injury. Altogether, these data provide further insight into the protective effect of ANXA1 and its mimetics and a rationale for a clinical use for drugs developed from this line of research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A classical action for open superstring field theory has been proposed which does not suffer from contact term problems. After generalizing this action to include the non-GSO projected states of the Neveu-Schwarz string, the pure tachyon contribution to the tachyon potential is explicitly computed. The potential has a minimum of V = 1/32g(2) which is 60% of the predicted exact minimum of V = 1/2 pi(2)g(2) from D-brane arguments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Muller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coumarin antibiotics are potent inhibitors of DNA replication whose target is the enzyme DNA gyrase, an ATP-dependent bacterial type II topoisomerase. The coumarin drugs inhibit gyrase action by competitive binding to the ATP-binding site of DNA gyrase B protein. The production of new biologically active products has stimulated additional studies on coumarin-gyrase interactions. In this regard, a 4.2 kDa peptide mimic of DNA gyrase B protein from Escherichia coli has been designed and synthesized. The peptide sequence includes the natural fragment 131-146 (coumarin resistance-determining region) and a segment containing the gyrase-DNA interaction region (positions 753-770). The peptide mimic binds to novobiocin (K-a = 1.4 +/- 0.3 x 10(5) m(-1)), plasmid (K-a = 1.6 +/- 0.5 x 10(6) m(-1)) and ATP (K-a = 1.9 f 0.4 x 10(3) m(-1)), results previously found with the intact B protein. on the other hand, the binding to novobiocin was reduced when a mutation of Arg-136 to Leu-136 was introduced, a change previously found in the DNA gyrase B protein from several coumarin-resistant clinical isolates of Escherichia coLi. In contrast, the binding to plasmid and to ATP was not altered. These results suggest that synthetic peptides designed in a similar way to that described here could be used as mimics of DNA gyrase in studies which seek a better understanding of the ATP, as well as coumarin, binding to the gyrase and also the mechanism of action of this class of antibacterial drugs. Copyright (C) 2004 European Peptide Society and John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex 1), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50 = 62.06 mu M) through a non-competitive type of inhibition (K-I = 8.1 mu M). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baiting studies performed in large, medium and small hospitals in Brazil revealed the presence of 14 ant species, with up to nine recorded in one hospital. Dominant species were exotic ants, and in the large hospital, Tapinoma melanocephalum was the most prevalent. Ants were not uniformly spread through the hospitals, but tended to be found in the more critical areas, particularly in nursery, intensive care, obstetrics, neurology and dermatology units. Bacteriological studies using specific media for bacteria associated with intra-hospital infections indicated the potential for the mechanical vectoring of species of Staphylococcus, Serratia, Klebsiella, Acinetobacter, Enterobacter, Candida and Enterococcus by ants. Although T. melanocephalum did not have the highest rate of association with these bacteria, its ubiquitous occurrences resulted in the highest overall potential as a vector of these bacteria. Because of a large number of ant species occurring in Brazilian hospitals, ants pose a potential problem to the spread of diseases in hospitals. Because of the number of associated ant species in hospitals, the control of this potential problem is much more difficult than in registered temperate areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the effective action for quantum electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson. We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e2/m. ©2000 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinolones constitute a family of compounds with a potent antibiotic activity. The enzyme DNA gyrase, responsible for the replication and transcription processes in DNA of bacteria, is involved in the mechanism of action of these drugs. In this sense, it is believed that quinolones stabilize the so-called 'cleavable complex' formed by DNA and gyrase, but the whole process is still far from being understood at the molecular level. This information is crucial in order to design new biological active products. As an approach to the problem, we have designed and synthesized low molecular weight peptide mimics of DNA gyrase. These peptides correspond to sequences of the subunit A of the enzyme from Escherichia coli, that include the quinolone resistance-determining region (positions 75-92) and a segment containing the catalytic Tyr-122 (positions 116-130). The peptide mimic of the non-mutated enzyme binds to ciprofloxin (CFX) only when DNA and Mg2+ were present (Kd = 1.6 × 10 -6 m), a result previously found with DNA gyrase. On the other hand, binding was reduced when mutations of Ser-83 to Leu-83 and Asp-87 to Asn-87 were introduced, a double change previously found in the subunit A of DNA gyrase from several CFX-resistant clinical isolates of E. coli. These results suggest that synthetic peptides designed in a similar way to that described here can be used as mimics of gyrases (topoisomerases) in order to study the binding of the quinolone to the enzyme-DNA complex as well as the mechanism of action of these antibiotics. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two extracellular xylanases produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized. Estimated molecular masses were 26.3 and 27 kDa (xyl I); 7.7 and 17.7 kDa (xyl II) for gel filtration and SDS-PAGE, respectively. Optimal temperature for both xylanases was 50-55°C. Optimal pH was 6.5-7.0 for xyl I, and 5.5-6.5 for xyl II. The thermostability (T half) at 55°C was 27.3 min (xyl I) and >90 min (xyl II). Xylanase activity was inhibited by several ions. β-mercaptoethanol activated 59 and 102% xyl I and xyl II activities, respectively. These enzymes preferentially hydrolyzed birchwood xylan, and the K m and V max values were 2.5 mg/ml and 1679 U/mg protein (xyl I), and 3.9 mg/ml and 113 U/mg protein (xyl II). The action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity. © 2004 Elsevier Ltd. All rights reserved.