754 resultados para Zoige wetland
Resumo:
Current situation of wetland resources in Liaodong bay area are investigated. Main environmental elements are monitored and evaluated. Based on the research, the influences of resources utilization on environment are predicted, and the strategies for protecting environment and sustainable utilization of wetland resources are put forward.
Resumo:
The conservation of species requires preservation of natural habitats,where the integrity of natural habitats has been severely disturbed and species goes extinct. All natural habitats are continuing to decline both inside and outside of reserves. Habitat change is partly a natural process (e.g., succession), but human activities have accelerated the process so that natural rate of renewal is insufficient to maintain natural habitats. This paper provided concept, methods of habitat renewal, habitat mitigation and their implication to protection and exploitation of natural resource. We argue that our only resourse, in light of these scenarios, is to adopt a new conservation strategy that considers the importance of habitat renewal and habitat mitigation in addition to habitat preservation. Accordingly, in our management decision, we must not only choose the size of area to preserve ,but also the size of area to balance habitat loss with habitat renewal or habitat mitigation. Finally, we explored the application of habitat renewal and habitat mitigation in regional sustainable development of Liaohe Delta wetland.
Resumo:
湿地的国内外研究进展王宪礼李秀珍(中国科学院沈阳应用生态研究所,110015)AdvancesinWetlands’Researches.WangXianli,LiXiuzhen(InstituteofAppliedEcology,ChineseA...
Resumo:
The results of the examination showed that some wetland plants' leaves and stems above the surface of water have little ability to supply water body with oxygen through roots of themselves while they are photosynthesizing. These plants are calamus(Acorus calamus), cattail(Typha angustifolia), wild rice stem(Zizania caduciflora), Cyoerus alternifokius, and water hyacinth(Eichhornia crassipes). It means that there is no relationship between these plants' photosynthesis and the breath of root cells. But duckweed(Lemna minor) has a small to raise DO 0.44mg·L -1 in average, while it is photosynthesizing during the examination. Reed(Phragmitas communis) may have a little the to provide oxygen for water body through root of itself while it is photosynthesizing. It raised DO 0.30mg·L -1 in average during the examination.
Resumo:
As one of the most typical wetlands, marsh plays an important role in hydrological and economic aspects, especially in keeping biological diversity. In this study, the definition and connotation of the ecological water storage of marsh is discussed for the first time, and its distinction and relationship with ecological water requirement are also analyzed. Furthermore, the gist and method of calculating ecological water storage and ecological water requirement have been provided, and Momoge wetland has been given as an example of calculation of the two variables. Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement. For reasonably spatial and temporal variation of water storage and rational water resources planning, the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions, ecological demand and actual water resources.
Resumo:
Based on the theories of sequence stratigraphy and sedimentology, as well as comprehensive studies of seismic data, drilling data, core interpretation and setting of this area, the thesis presents an analysis for Mesozoic formation in Dinan uplift. By means of recognizing the boundary of the sequence, dividing and correlating the systems tract, Mesozoic of Dinan uplift is divided into ten sequences and twenty-five systems tracts during the establishment of the sequence framework. In the framework, some sequences are featured by mature systems of lowstand, water-transgression and highstand, while some undeveloped systems of lowstand or highstand. The main sedimentary facies in Mesozoic of Dinan uplift are braided river, meandering river, delta and lake. The braided river was divided into sandy river and rudaceous river by the lithology of the river channel and was divided into dry climate and wet climate condition by the color of the flood plain. Additionally, The concept of “wetland” is put forward for the first time and regarded as the consequence of wet climate. The analysis includes the classification of six types of traps: (1) stratigraphic overlap trap, (2) lithologic trap with updip pinchout, (3) stratigraphic unconformity trap, (4) fault-lithology trap, (5) fault trap, (6) anticlinal trap, and combining with the research of the characteristics and distribution rules for the known reservoir, it draws out that “fault control” is the petroleum accumulation pattern in this area, in which fault is the key element of the transporting system. Finally the thesis concludes the distribution characteristics and optimized some targets for the potential exploration zone.
Resumo:
Junggar Basin has a large amount of recoverable reserves, However, due to the unfavorable factors, such as bad seismic data quality, complex structure with many faults and less wells, the exploration of oil and gas is still relatively limited, so advanced theoretical guidance and effective technical supports are desirable. Based on the theories of sedimentology, as well as comprehensive studies of outcrops, seismic data, drilling data and setting of this area, the paper establishes the isochronous correlation framework, and analyzes the sedimentary facies types and provenance direction, and obtains the profile and plain maps of the sedimentary facies combined with the logging constrained inversion. Then the paper analyzes the reservoir controlling factors, reservoir lithology attribute, 4-property relationship and sensibility based on the sedimentary facies research, and sets up a 3D geological model using facies controlled modeling. Finally, the paper optimizes some target areas with the conclusions of reservoir, structure and reservoir formation.Firstly, the paper establishs the isochronous correlation framework by the seismic data, drilling data and setting of this area. The sedimentary facies in Tai13 well block are braided river and meandering river according to the analysis of the lithology attribute, logging facies and sedimentary structure attribute of outcrop. The concept of “wetland” is put forward for the first time. The provenance direction of Badaowan and Qigu formation is obtained by the geology setting, sedimentary setting and paleocurrent direction. The paper obtains the profile and plain maps of the sedimentary facies from the sand value of the wells and the sand thickness maps from the logging constrained inversion. Then, this paper takes characteristics and control factors of the Jurassic reservoirs analysis on thin section observation, scanning transmission electron microscope observation and find out the petrology characteristics of reservoir, space types of reservoir and lithofacies division. In this area, primary pores dominate in the reservoir pores, which believed that sedimentation played the most important roles of the reservoir quality and diagenesis is the minor factor influencing secondary porosity. Using stochastic modeling technique,the paper builds quantitative 3-D reservoir Parameter. Finally, combined the study of structure and reservoir formation, the reservoir distribution regularity is concluded: (a) structures control the reservoir formation and accumulation. (b) Locating in the favorable sedimentary facies belt. And the area which meets these conditions mentioned above is a good destination for exploration.
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.
Resumo:
Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK’s busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally-located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines, were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets), and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in the winter of 2005-2006 previous to peak dredging. In the following winter 2006-2007, shelduck in Pembroke River showed their lowest winter count, and spring 2007 was the largest ever drop in numbers of broods across MHW between successive breeding seasons. Wigeon counts in Pembroke River were again low in late 2012 after further dredging nearby. These results are strongly supported by PAH data reported previously from invertebrate bioaccumulation studies in MHW 2007-2010, themselves closely reflecting sediment
Resumo:
The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of
Resumo:
Palaeoecological methods can provide an environmental context for archaeological sites, enabling the nature of past human activity to be explored from an indirect but alternative perspective. Through a palynological study of a small fen wetland located within the catchment of a multi-period prehistoric complex at Ballynahatty, Co. Down, Northern Ireland, we reconstruct the vegetation history of the area during the early prehistoric period. The pollen record reveals tentative evidence for Mesolithic activity in the area at 6410-6220 cal. BC, with woodland disturbance identified during the Mesolithic-Neolithic transitional period ca. 4430-3890 cal. BC. A more significant impact on the landscape is observed in the Early Neolithic from 3944-3702 cal. BC, with an opening up of the forests and the establishment of a mixed agricultural economy. This activity precedes and continues to be evident during the Mid-Neolithic during which megalithic tombs and related burial sites were constructed at Ballynahatty. Due to chronological uncertainties and a possible hiatus in peat accumulation in the fen, the contemporary environment of the Ballynahatty timber circle complex (constructed and used ca. 3080-2490 cal. BC) and henge (dating to the third millennium cal. BC) cannot certainly be established. Nevertheless, the pollen record suggests that the landscape remained open through to the Bronze Age, implying a long continuity of human activity in the area. These findings support the idea that the Ballynahatty prehistoric complex was the product of a gradual and repeated restructuring of the ritual and ceremonial landscape whose significance continued to be recognised throughout the early prehistoric period.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.