962 resultados para Yb3 doping
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
In the present work we report the preparation details studies on ZnO thin films. ZnO thin films are prepared using cost effective deposition technique viz., Chemical Spray Pyrolysis (CSP). The method is very effective for large area preparation of the ZnO thin film. A new post-deposition process could also be developed to avoid the adsorption of oxygen that usually occurs after the spraying process i.e., while cooling. Studies were done by changing the various deposition parameters for optimizing the properties of ZnO thin film. Moreover, different methods of doping using various elements are also tried to enhance the conductivity and transparency of the film to make these suitable for various optoelectronic applications.
Resumo:
Superparamagnetic nanocomposites based on g-Fe2O3 and sulphonated polystyrene have been synthesized by ion exchange process and the preparation conditions were optimized. Samples were subjected to cycling to study the effect of cycling on the magnetic properties of these composites. The structural and magnetization studies have been carried out. Magnetization studies show the dependence of magnetization on the number of ion exchange cycles. Doping of cobalt at the range in to the g-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The exact amount of cobalt dopant as well as the iron content was estimated by Atomic Absorption Spectroscopy. The effect of cobalt in modifying the properties of the composites was then studied and the results indicate that the coercivity can be tuned by the amount of cobalt in the composites. The tuning of both the magnetization and the coercivity can be achieved by a combination of cycling of ion exchange and the incorporation of cobalt
Resumo:
Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.
Resumo:
Bulk polycrystalline samples in the series Ti1+xS2 (x = 0 to 0.05) were prepared using high temperature synthesis from the elements and spark plasma sintering. X-ray structure analysis shows that the lattice constant c expands as titanium intercalates between TiS2 slabs. For x=0, a Seebeck coefficient close to -300 μV/K is observed for the first time in TiS2 compounds. The decrease in electrical resistivity and Seebeck coefficient that occurs upon Ti intercalation (Ti off stoichiometry) supports the view that charge carrier transfer to the Ti 3d band takes place and the carrier concentration increases. At the same time, the thermal conductivity is reduced by phonon scattering due to structural disorder induced by Ti intercalation. Optimum ZT values of 0.14 and 0.48 at 300K and 700K, respectively, are obtained for x=0.025.
Resumo:
We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011
Resumo:
Several experimental groups have achieved effective n- and p-type doping of silicon nanowires (SiNWs). However, theoretical analyses on ultrathin SiNWs suggest that dopants tend to segregate to their surfaces, where they would combine with defects such as dangling bonds (DB), becoming electronically inactive. Using fully ab initio calculations, we show that the differences in formation energies among surface and core substitutional sites decrease rapidly as the diameters of the wires increase, indicating that the dopants will be uniformly distributed. Moreover, occurrence of the electronically inactive impurity/DB complex rapidly becomes less frequent for NWs of larger diameters. We also show that the high confinement in the ultrathin SiNWs causes the impurity levels to be deeper than in the silicon bulk, but our results indicate that for NWs of diameters larger than approximately 3 nm the impurity levels recover bulk characteristics. Finally, we show that different surfaces will lead to different dopant properties in the gap.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
The products formed from the reaction of emeraldine base polyaniline (EB-PANI) with Fe(III) ions in N-methyl-pyrrolidone (NMP), dimethylacetamide (DMA), dimethylformamide (DMF) and m-cresol media have been investigated using UV-VIS-NIR and resonance Raman (lambda(0) = 632.8 and 1064 nm) spectroscopies. Through these results it was verified that the different PANI forms in solution can be formed by the suitable choice of the solvent. The behavior of Fe(III)/EB-PANI in different solvents was rationalized in terms of the interactions among Fe(III) ions, EB-PANI and solvent. In basic NMP, DMA and DMF media, the reaction of Fe(III) with EB-PANI yields EB-PANI doping giving ES-PANI and/or the EB-PANI oxidation to PB-PANI. The formation of ES-PANI is favored in DMF while PB-PANI is formed in a greater extension in NMP and DMA. In acidic m-cresol, only ES-PANI is produced in Fe(III)/EB-PANI solutions indicating the important role played by the solvent in the nature of the product. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, we study the effect of doping depth profile on the photocatalytic and surface properties of TiO(2) films. Two thin film layers of TiO(2) (200 nm) and Co (5 nm), respectively, were deposited by physical evaporation on glass substrate. These films were annealed for 1 s at 100 and 400 A degrees C and the Co layer was removed by chemical etching. Atomic force microscopy (AFM) phase images showed changes in the surface in function of thermal treatment. The grazing-incidence X-ray fluorescence (GIXRF) measurements indicated that the thermal treatment caused migration of Co atoms to below the surface, the depths found were between 19 and 29 nm. The contact angle showed distinct values in function of the doped profile or Co surface concentration. The UV-vis spectra presented a red shift with the increasing of thermal treatment. Photocatalytical assays were performed by methylene blue discoloration and the higher activity was found for TiO(2)-Co treated at 400 A degrees C, the ESI-MS showed the fragments formed during the methylene blue decomposition.
Resumo:
A presente pesquisa descritiva do tipo documental centrou-se em analisar as sanções disciplinares aplicadas em caso de doping, a atletas profissionais e não profissionais que atuam no Brasil. A amostragem foi levantada através de um processo de seleção não probabilÃstica intencional, utilizando-se como sujeitos, 18 atletas de uma modalidade esportiva dita não profissional: atletismo e 19 de uma modalidade profissional: futebol, de ambos os sexos, os quais tenham sido flagrados pelo exame de controle de dopagem da Confederação Brasileira de Atletismo (CBAt) e da Confederação Brasileira de Futebol (CBF). Como instrumentos de análise, foram utilizados os diagnósticos de dopagem positiva, arquivados junto a CBAt e CBF; além dos processos julgados pelo Superior Tribunal de Justiça Desportiva (STJD) do atletismo entre os anos de 2003/2007 e os processos julgados pelo STJD do futebol no ano de 2007. Os resultados demonstram que as sanções aplicadas aos desportistas diferem muito entre as modalidades incluÃdas no estudo. Enquanto encontramos, no atletismo a aplicação de sanções em conformidade com o Código Mundial Anti Doping (CMAD) com penalidades de no mÃnimo de dois anos, no futebol encontrou-se grande número de absolvições ou aplicação de penalidades conforme o Código Brasileiro de Justiça Desportiva (CBJD) que prevê penalidades muito inferiores. Por outro lado verificou-se ser a modalidade Futebol a que mais realiza controles, sendo certo que durante o ano de 2007 o desporto profissional realizou 4832 testes, ao passo que o desporto dito não profissional realizou tão somente 281. O caráter multidisciplinar do trabalho 12 pôde ser caracterizado pelo emprego de técnicas que envolveram direito, educação fÃsica, farmacologia
Resumo:
Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)