985 resultados para Xilin River basin
Resumo:
Species richness and geographical distribution of Cyclopoida freshwater copepods were analyzed along the La Plata River basin. Ninety-six samples were taken from 24 sampling sites, twelve sites for zooplankton in open waters and twelve sites for zooplankton within macrophyte stands, including reservoirs and lotic stretches. There were, on average, three species per sample in the plankton compared to five per sample in macrophytes. Six species were exclusive to the plankton, 10 to macrophyte stands, and 17 were common to both. Only one species was found in similar proportions in plankton and macrophytes, while five species were widely found in plankton, and thirteen in macrophytes. The distinction between species from open water zooplankton and macrophytes was supported by nonmetric multidimensional analysis. There was no distinct pattern of endemicity within the basin, and double sampling contributes to this result. This lack of sub-regional faunal differentiation is in accordance with other studies that have shown that cyclopoids generally have wide geographical distribution in the Neotropics and that some species there are cosmopolitan. This contrasts with other freshwater copepods such as Calanoida and some Harpacticoida. We conclude that sampling plankton and macrophytes together provided a more accurate estimate of the richness and geographical distribution of these organisms than sampling in either one of those zones alone.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co. Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 mu g L-1 of Mn. Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L-1). After retrieval, the DGT units were disassembled and the P81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 x 10(-6) cm(2) s(-1). The metal retention and phosphate group homogeneities on the P81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 mu m dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 mu g L-1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 mu g L-1). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Elevated nitrate in groundwater is common is agricultural areas where fertilizer has been added at high rates for decades. Within the Judith River Wastershed, high native soil fertility allowed for dryland wheat production without N fertilization until the 1980s, yet elevated nitrate levels were frequently observed in shallow aquifers. Dr. Stephanie Ewing presents results for soil, groundwater and surface water analyses from a hydrologically isolated strath terrace near Moccasin, MT. In context of this uniquely well constrained field setting, these observed data, along with land use history and a simple mass balance model, revel the long term development and perturbation of native soil fertility with cultivation.
Resumo:
This paper reports the results of the investigations of 2006-2007 on the distribution and migration forms of artificial radionuclides and chemical elements in the Ob-Irtysh water system. Three regions were studied. One of them is a local segment of the Ob River upstream from the confluence with the Irtysh River; its investigation allowed us to estimate the general radioecological state of the aquatic environment affected by the activity of the Tomsk 7 plant. The second region is a local segment of the Irtysh River upstream from its confluence with the Ob River, where the influence of emissions from the NPO Mayak could be estimated. The third region is the water area of the Ob River after its confluence with the Irtysh River. It characterizes the real level of radioactive and chemical contamination of the middle reaches of the Ob River. In order to explain horizontal variations in the distribution of radionuclides in the upper layer of bottom sediments collected at various sites, the results of sorption-kinetic experiments with radioactive tracers in the precipitate-solution system were used. The investigation of the migration forms of trace elements and radionuclides occurring in river water was based on the method of tangential-flow membrane filtration. Chemical element contents were determined in 400-ml water samples. A set of Millipore polysulfone membranes with pore sizes of 8, 1.2, 0.45, 0.1, and 0.025 µm was employed. Taking into account the ultralow specific concentrations of radionuclides in the water, they were analyzed in 300-500 litre samples using Millipore polysulfone membranes with pore sizes of 0.45 µm and 15 kDa. This allowed us to estimate the percentages of cesium-137 and plutonium-239, 240 in the suspended particulate fraction, colloids, and dissolved species.
(Table 2) Temperature, pH and redox potential of water samples obtained from the Ob and Irtysh River