976 resultados para Wisconsin Infantry. 2d Regiment, 1898. Co. C
Resumo:
1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) were copolymerized in different weight ratios using UV light induced photo-polymerization to give poly(HDDA-co-MMA). Differential scanning calorimetry shows that copolymer was formed. The thermogravimetric and differential scanning calorimetric studies with different heating rates were carried out on these copolymers to understand the nature of degradation and to determine its kinetics. Different kinetic models were adopted to evaluate various parameters like the activation energy, the order, and the frequency factor. These analyses are important to study the binder removal from 3D-shaped ceramic objects made by techniques like Solid free form fabrication. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 2444-2453, 2010.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H ... O hydrogen bond between Ala(4) (CH)-H-alpha and (D)Leu(9)CO. The parameters for C-H ... O interaction are Ala(4) (CH)-H-alpha .. O=C (D)Leu(9) distance 3.27 Angstrom C-alpha-H .. O angle 176 degrees, and O .. H-alpha distance 2.29 Angstrom. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner. (C) 2000 Academic Press.
Resumo:
Thiosemicarbazones are having the ability to bind with metal and inhibit the enzyme ribonucleoside diphosphate reductase(RDR),an enzyme which is involved in the synthesis of DNA precursors in the mammalian cells.The title compound N-methyl-t-3-methyl-r-2, c-6-diphenylpiperidin-4-one thiosemicarbazone (NMMDPT), CCDC 218052, was prepared using Mannich reaction and characterized by X-ray diffraction methods.The crystal data are:C20H24N4S; M.W= 352.49, triclinic,space group P (1) over bar, a = 8.467(2)angstrom, b = 10.228(2)angstrom, c = 12.249(2)angstrom; lpha=92.595(3)degrees, beta=104.173(3)degrees, gamma=13.628(3)degrees; V=930.0(3)angstrom(3), Z=2, D-cal=1.259Mgm(-3),mu=0.184mm(-1),lambda (MoKalpha)=0.71073 angstrom, final R1 and wR2 are 0.0470 and 0.1052, respectively. The piperidine rings adopt chair conformation. The planar phenyl rings are oriented equatorially at 2,6-positions of the piperidine ring. The molecular packing can be viewed as dimers held together by two N-H...S types of intermolecular hydrogen bonds. Weak C-H...pi interactions also support the stability of the molecules in the crystal in addition to van der Waals forces. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The crystal structures and magnetic properties of five new transition metal-azido complexes with two anionic [pyrazine-2-carboxylate (pyzc) and p-aminobenzoate (paba)] and two neutral [pyrazine (pyz) and pyridine (py)] coligands are reported All five complexes were synthesized bysolvothermal methods The complex [Co-2(pyzc)(2)(N-3)(2)(H2O)(2)](n) (1) is 1D and exhibit canted antiferromagnetism, while the 3D complex [MnNa(pyzc)(N-3)(2)(H2O)(2)](n) (2) has a complicated structure and is weakly ferromagnetic in nature [Mn-2(paba)(2)(N-3)(2)(H2O)(2)](n) (3). is a 2D sheet and the Mn-II ions are found to be antiferromagnetically coupled The isostructural 2D complexes [Cu-3(pyz)(2)(N-3)(6)](n) (4) and [Cu-3(py)(2)(N-3)(6)](n) (5) resemble remarkably in their magnetic properties exhibiting moderately strong ferromagnetism. Density functional theory calculations (B3LYP functional) have been performed to provide a qualitative theoretical interpietation of the overall magnetic behavior shown by these complexes.
Resumo:
The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.
Resumo:
The reaction of pyrimidine-2-carbonitrile, NaN3 in the presence of Co(NO3)(2)center dot 6H(2)O or MnCl2 center dot 4H(2)O leads to the formation of complexes Co(pmtz)(mu(1,3)-N-3)(H2O)](n) (1) and Mn(pmtz)(mu(1,3)-N-3)(H2O)](n) (2) respectively, under hydrothermal condition pmtz =5-(pyrimidyl)tetrazolate]. These two complexes have been fully characterized by single crystal X-ray diffraction. Complex 1 crystallizes in a non-centrosymmetric space group Aba2 in the orthorhombic system and is found to exhibit ferroelectric behavior, whereas complex 2 crystallizes in the P2(1)/c space group in the monoclinic system. Variable temperature magnetic characterizations in the temperature range of 2-300 K indicate that complex 1 is a canted antiferromagnet (weak ferromagnet) with T-c = 15.9 K. Complex 1 represents a unique example of a multiferroic coordination polymer containing tetrazole as a co-ligand. Complex 2 is a one-dimensional chain of Mn(II) bridged by a well-known antiferromagnetic coupler end-to-end azido ligand. In contrast to the role played by the end-to-end azido pathway in most of the transition metal complexes, complex 2 showed unusual ferromagnetic behavior below 40 K because of spin canting.
Resumo:
The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.
Resumo:
The structural characterization in crystals of three designed decapeptides containing a double D-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val- (D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all L analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed a-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-(HO)-O-... hydrogen bond between residue 4 (CH)-H-alpha and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C-alpha atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt at conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-(HO)-O-... hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
Resistivity imaging of a reconfigurable phantom with circular inhomogeneities is studied with a simple instrumentation and data acquisition system for Electrical Impedance Tomography. The reconfigurable phantom is developed with stainless steel electrodes and a sinusoidal current of constant amplitude is injected to the phantom boundary using opposite current injection protocol. Nylon and polypropylene cylinders with different cross sectional areas are kept inside the phantom and the boundary potential data are collected. The instrumentation and the data acquisition system with a DIP switch-based multiplexer board are used to inject a constant current of desired amplitude and frequency. Voltage data for the first eight current patterns (128 voltage data) are found to be sufficient to reconstruct the inhomogeneities and hence the acquisition time is reduced. Resistivity images are reconstructed from the boundary data for different inhomogeneity positions using EIDORS-2D. The results show that the shape and resistivity of the inhomogeneity as well as the background resistivity are successfully reconstructed from the potential data for single or double inhomogeneity phantoms. The resistivity images obtained from the single and double inhomogeneity phantom clearly indicate the inhomogeneity as the high resistive material. Contrast to noise ratio (CNR) and contrast recovery (CR) of the reconstructed images are found high for the inhomogeneities near all the electrodes arbitrarily chosen for the entire study. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An interdiffusion study is conducted on the Co-W system by a diffusion couple technique. The interdiffusion coefficient of the Co(W) solid solution and the Co7W6 mu phase is determined. The activation energy is found to increase with the W content of the Co(W) solid solution. (C) 2010 Elsevier Ltd. All rights reserved.