978 resultados para Winds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low resolution coupled ocean-atmosphere general circulation model OAGCM is used to study the characteristics of the large scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed basin, whilst the third contains a gap in the barrier to allow circumglobal flow at high southern latitudes. Warm greenhouse climates with a global average air surface temperature of around 27C result in all cases. Equator to pole temperature gradients are shallower than that of a current climate simulation. Whilst changes in the land configuration cause regional changes in temperature, winds and rainfall, heat transports within the system are little affected. Inhibition of all ocean transport on the aquaplanet leads to a reduction in global mean surface temperature of 8C, along with a sharpening of the meridional temperature gradient. This results from a reduction in global atmospheric water vapour content and an increase in tropical albedo, both of which act to reduce global surface temperatures. Fitting a simple radiative model to the atmospheric characteristics of the OAGCM solutions suggests that a simpler atmosphere model, with radiative parameters chosen a priori based on the changing surface configuration, would have produced qualitatively different results. This implies that studies with reduced complexity atmospheres need to be guided by more complex OAGCM results on a case by case basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The El Niño–Southern Oscillation (ENSO) is a naturally occurring fluctuation that originates in the tropical Pacific region and affects ecosystems, agriculture, freshwater supplies, hurricanes and other severe weather events worldwide. Under the influence of global warming, the mean climate of the Pacific region will probably undergo significant changes. The tropical easterly trade winds are expected to weaken; surface ocean temperatures are expected to warm fastest near the equator and more slowly farther away; the equatorial thermocline that marks the transition between the wind-mixed upper ocean and deeper layers is expected to shoal; and the temperature gradients across the thermocline are expected to become steeper. Year-to-year ENSO variability is controlled by a delicate balance of amplifying and damping feedbacks, and one or more of the physical processes that are responsible for determining the characteristics of ENSO will probably be modified by climate change. Therefore, despite considerable progress in our understanding of the impact of climate change on many of the processes that contribute to El Niño variability, it is not yet possible to say whether ENSO activity will be enhanced or damped, or if the frequency of events will change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the descent into the recent ‘exceptionally’ low solar minimum, observations have revealed a larger change in solar UV emissions than seen at the same phase of previous solar cycles. This is particularly true at wavelengths responsible for stratospheric ozone production and heating. This implies that ‘top-down’ solar modulation could be a larger factor in long-term tropospheric change than previously believed, many climate models allowing only for the ‘bottom-up’ effect of the less-variable visible and infrared solar emissions. We present evidence for long-term drift in solar UV irradiance, which is not found in its commonly used proxies. In addition, we find that both stratospheric and tropospheric winds and temperatures show stronger regional variations with those solar indices that do show long-term trends. A top-down climate effect that shows long-term drift (and may also be out of phase with the bottom-up solar forcing) would change the spatial response patterns and would mean that climate-chemistry models that have sufficient resolution in the stratosphere would become very important for making accurate regional/seasonal climate predictions. Our results also provide a potential explanation of persistent palaeoclimate results showing solar influence on regional or local climate indicators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A positive salinity anomaly of 0.2 PSU was observed between 50 and 200 m over the years 2000–2001 across the Mozambique Channel at a section at 17°S which was repeated in 2003, 2005, 2006, and 2008. Meanwhile, a moored array is continued from 2003 to 2008. This anomaly was most distinct showing an interannual but nonseasonal variation. The possible origin of the anomaly is investigated using output from three ocean general circulation models (Estimating the Circulation and Climate of the Ocean, Ocean Circulation and Climate Advanced Modeling, and Parallel Ocean Program). The most probable mechanism for the salinity anomaly is the anomalous inflow of subtropical waters caused by a weakening of the northern part of the South Equatorial Current by weaker trade winds. This mechanism was found in all three numerical models. In addition, the numerical models indicate a possible salinization of one of the source water masses to the Mozambique Channel as an additional cause of the anomaly. The anomaly propagated southward into the Agulhas Current and northward along the African coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By making use of TOVS Path-B satellite retrievals and ECMWF reanalyses, correlations between bulk microphysical properties of large-scale semi-transparent cirrus (visible optical thickness between 0.7 and 3.8) and thermodynamic and dynamic properties of the surrounding atmosphere have been studied on a global scale. These clouds constitute about half of all high clouds. The global averages (from 60°N to 60°S) of mean ice crystal diameter, De, and ice water path (IWP) of these clouds are 55 μm and 30 g m−2, respectively. IWP of these cirrus is slightly increasing with cloud-top temperature, whereas De of cold cirrus does not depend on this parameter. Correlations between De and IWp of large-scale cirrus seem to be different in the midlatitudes and in the tropics. However, we observe in general stronger correlations between De and IWP and atmospheric humidity and winds deduced from the ECMWF reanalyses: De and IWP increase both with increasing atmospheric water vapour. There is also a good distinction between different dynamical situations: In humid situations, IWP is on average about 10 gm−2 larger in regions with strong large-scale vertical updraft only that in regions with strong large-scale horizontal winds only, whereas the mean De of cold large-scale cirrus decreases by about 10 μm if both strong large-scale updraft and horizontal winds are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the influence of solar variability on the Earth’s climate requires knowledge of solar variability, solar-terrestrial interactions and the mechanisms determining the response of the Earth’s climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial timescales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth’s climate on associated timescales are described, including variations in ozone, temperatures, winds, clouds, precipitation and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contribution of solar variations to recent observations of global climate change are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definition and interpretation of the Arctic oscillation (AO) are examined and compared with those of the North Atlantic oscillation (NAO). It is shown that the NAO reflects the correlations between the surface pressure variability at its centers of action, whereas this is not the case for the AO. The NAO pattern can be identified in a physically consistent way in principal component analysis applied to various fields in the Euro-Atlantic region. A similar identification is found in the Pacific region for the Pacific–North American (PNA) pattern, but no such identification is found here for the AO. The AO does reflect the tendency for the zonal winds at 35° and 55°N to anticorrelate in both the Atlantic and Pacific regions associated with the NAO and PNA. Because climatological features in the two ocean basins are at different latitudes, the zonally symmetric nature of the AO does not mean that it represents a simple modulation of the circumpolar flow. An increase in the AO or NAO implies strong, separated tropospheric jets in the Atlantic but a weakened Pacific jet. The PNA has strong related variability in the Pacific jet exit, but elsewhere the zonal wind is similar to that related to the NAO. The NAO-related zonal winds link strongly through to the stratosphere in the Atlantic sector. The PNA-related winds do so in the Pacific, but to a lesser extent. The results suggest that the NAO paradigm may be more physically relevant and robust for Northern Hemisphere variability than is the AO paradigm. However, this does not disqualify many of the physical mechanisms associated with annular modes for explaining the existence of the NAO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north-south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long-distance distribution of pollinia and especially seeds. A cline of gene flow connects populations from Kent and central and southern Europe; these individuals should therefore be considered part of an extensive meta-population. Gene flow is also evident among populations from Kent, which appear to constitute a single metapopulation. They show some evidence of hybridization, and possibly also introgression, with O. apifera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Dispersal is regarded as critical to the stability of existing populations and the spread of invading species, but empirical data on the effect of travelling conditions during the transfer phase are rare. We present evidence that both timing and distance of ex-natal dispersal in buzzards (Buteo buteo) are strongly affected by weather. 2. Dispersal was recorded more often when the wind changed to a more southerly direction from the more common westerly winds, and when minimum temperatures were lower. The effect of wind direction was greatest in the winter and minimum temperature was most important in the autumn. Poor weather did not appear to initiate dispersal. 3. Dispersal distance was most strongly correlated with maximum temperature during dispersal and wind direction in the following 5-day period. Combined with the sex of the buzzard these three variables accounted for 60% of the variation in dispersal distance. 4. These results are important for conservationists who manage species recovery programs and wildlife managers who model biological invasions.