918 resultados para Wild flowers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthocyanins are flavonoid pigments imparting red, blue, or purple pigmentation to fruits, flowers and foliage. These compounds are powerful antioxidants in vitro, and are widely believed to contribute to human health. The fruit of the domestic apple (Malus x domestica) is a popular and important source of nutrients, and is considered one of the top ‘functional foods’—those foods that have inherent health-promoting benefits beyond basic nutritional value. The pigmentation of typical red apple fruits results from accumulation of anthocyanin in the skin. However, numerous genotypes of Malus are known that synthesize anthocyanin in additional fruit tissues including the core and cortex (flesh). Red-fleshed apple genotypes are an attractive starting point for development of novel varieties for consumption and nutraceutical use through traditional breeding and biotechnology. However, cultivar development is limited by lack of characterization of the diversity of genetic backgrounds showing this trait. We identified and cataloged red-fleshed apple genotypes from four Malus diversity collections representing over 3,000 accessions including domestic cultivars, wild species, and named hybrids. We found a striking range of flesh color intensity and pattern among accessions, including those carrying the MYB10 R 6 allele conferring ectopic expression of a key transcriptional regulator of anthocyanin biosynthesis. Although MYB10 R 6 was strongly associated with red-fleshed fruit among genotypes, this allele was neither sufficient nor required for this trait in all genotypes. Nearly all red-fleshed accessions tested could be traced back to ‘Niedzwetzkyana’, a presumed natural form of M. sieversii native to central Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing supplementary food for wild birds is a globally popular past-time; almost half of the households in many developed countries participate and billions of US dollars are spent annually. Although the direct influence of this additional resource on bird survivorship and fecundity has been studied, there is little understanding of the wider ecological consequences of this massive perturbation to (what are usually) urban ecosystems. We investigated the possible effects of wild bird feeding on the size and survivorship of colonies of a widespread arthropod prey species of many small passerine birds, the pea aphid [Acyrthosiphon pisum (Harris); Hemiptera: Aphididae], in suburban gardens in a large town in southern England. We found significantly fewer aphids and shorter colony survival times in colonies exposed to avian predation compared to protected controls in gardens with a bird feeder but no such differences between exposed and protected colonies in gardens that did not feed birds. Our work therefore suggests that supplementary feeding of wild birds in gardens may indirectly influence population sizes and survivorship of their arthropod prey and highlights the need for further research into the potential effects on other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coil recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (P<0.001). This study demonstrates that the expression of MAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice and Arabidopsis while less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca L. (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, the SEASONAL FLOWERING LOCUS which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent LD suppression of flowering, and the early flowering that then occurs under LD is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca, and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long-term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short- and long-term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to evidence of insect pollinator declines, organisations in many sectors, including the food and farming industry, are investing in pollinator conservation. They are keen to ensure that their efforts use the best available science. We convened a group of 32 ‘conservation practitioners’ with an active interest in pollinators and 16 insect pollinator scientists. The conservation practitioners include representatives from UK industry (including retail), environmental non-government organisations and nature conservation agencies. We collaboratively developed a long list of 246 knowledge needs relating to conservation of wild insect pollinators in the UK. We refined and selected the most important knowledge needs, through a three-stage process of voting and scoring, including discussions of each need at a workshop. We present the top 35 knowledge needs as scored by conservation practitioners or scientists. We find general agreement in priorities identified by these two groups. The priority knowledge needs will structure ongoing work to make science accessible to practitioners, and help to guide future science policy and funding. Understanding the economic benefits of crop pollination, basic pollinator ecology and impacts of pesticides on wild pollinators emerge strongly as priorities, as well as a need to monitor floral resources in the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a period of some 5000 years or so in the prehistory of Europe when horse populations were greatly depleted and perhaps even disappeared in many places. Before this time, during the Upper Palaeolithic, wild horses were common; after, during the Bronze Age, domestic horses were being raised and used across Europe. What happened in between is uncertain, in part because of the sketchy archaeological record. Debates continue as to the origins (the when, where and how) of Europe's domestic horses, including whether horse husbandry dispersed only from habitats favourable to horses on the Eurasian steppes or whether there was local domestication in temperate Europe. This paper reviews the evidence for the transition from wild horses to domestic horses in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work suggests that the environment experienced in early life can alter life histories in wild populations [1, 2, 3, 4 and 5], but our understanding of the processes involved remains limited [6 and 7]. Since anthropogenic environmental change is currently having a major impact on wild populations [8], this raises the possibility that life histories may be influenced by human activities that alter environmental conditions in early life. Whether this is the case and the processes involved remain unexplored in wild populations. Using 23 years of longitudinal data on the Mauritius kestrel (Falco punctatus), a tropical forest specialist, we found that females born in territories affected by anthropogenic habitat change shifted investment in reproduction to earlier in life at the expense of late life performance. They also had lower survival rates as young adults. This shift in life history strategy appears to be adaptive, because fitness was comparable to that of other females experiencing less anthropogenic modification in their natal environment. Our results suggest that human activities can leave a legacy on wild birds through natal environmental effects. Whether these legacies have a detrimental effect on populations will depend on life history responses and the extent to which these reduce individual fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human–wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.