977 resultados para Web, Application, WebApp, Ionic, Angular, SPA
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.
Resumo:
This report introduces TimeBliography, a dynamic and online bibliography on temporal GIS. We provide a brief description of the bibliography as well as the components and functionalities of the web application that supports it. The bibliography is fully accessible on the Web at http://spaceandtime.wsiabato.info.
Resumo:
This document is the result of a process of web development to create a tool that will allow to Cracow University of Technology consult, create and manage timetables. The technologies chosen for this purpose are Apache Tomcat Server, My SQL Community Server, JDBC driver, Java Servlets and JSPs for the server side. The client part counts on Javascript, jQuery, AJAX and CSS technologies to perform the dynamism. The document will justify the choice of these technologies and will explain some development tools that help in the integration and development of all this elements: specifically, NetBeans IDE and MySQL workbench have been used as helpful tools. After explaining all the elements involved in the development of the web application, the architecture and the code developed are explained through UML diagrams. Some implementation details related to security are also deeper explained through sequence diagrams. As the source code of the application is provided, an installation manual has been developed to run the project. In addition, as the platform is intended to be a beta that will be grown, some unimplemented ideas for future development are also exposed. Finally, some annexes with important files and scripts related to the initiation of the platform are attached. This project started through an existing tool that needed to be expanded. The main purpose of the project along its development has focused on setting the roots for a whole new platform that will replace the existing one. For this goal, it has been needed to make a deep inspection on the existing web technologies: a web server and a SQL database had to be chosen. Although the alternatives were a lot, Java technology for the server was finally selected because of the big community backwards, the easiness of modelling the language through UML diagrams and the fact of being free license software. Apache Tomcat is the open source server that can use Java Servlet and JSP technology. Related to the SQL database, MySQL Community Server is the most popular open-source SQL Server, with a big community after and quite a lot of tools to manage the server. JDBC is the driver needed to put in contact Java and MySQL. Once we chose the technologies that would be part of the platform, the development process started. After a detailed explanation of the development environment installation, we used UML use case diagrams to set the main tasks of the platform; UML class diagrams served to establish the existing relations between the classes generated; the architecture of the platform was represented through UML deployment diagrams; and Enhanced entity–relationship (EER) model were used to define the tables of the database and their relationships. Apart from the previous diagrams, some implementation issues were explained to make a better understanding of the developed code - UML sequence diagrams helped to explain this. Once the whole platform was properly defined and developed, the performance of the application has been shown: it has been proved that with the current state of the code, the platform covers the use cases that were set as the main target. Nevertheless, some requisites needed for the proper working of the platform have been specified. As the project is aimed to be grown, some ideas that could not be added to this beta have been explained in order not to be missed for future development. Finally, some annexes containing important configuration issues for the platform have been added after proper explanation, as well as an installation guide that will let a new developer get the project ready. In addition to this document some other files related to the project are provided: - Javadoc. The Javadoc containing the information of every Java class created is necessary for a better understanding of the source code. - database_model.mwb. This file contains the model of the database for MySQL Workbench. This model allows, among other things, generate the MySQL script for the creation of the tables. - ScheduleManager.war. The WAR file that will allow loading the developed application into Tomcat Server without using NetBeans. - ScheduleManager.zip. The source code exported from NetBeans project containing all Java packages, JSPs, Javascript files and CSS files that are part of the platform. - config.properties. The configuration file to properly get the names and credentials to use the database, also explained in Annex II. Example of config.properties file. - db_init_script.sql. The SQL query to initiate the database explained in Annex III. SQL statements for MySQL initialization. RESUMEN. Este proyecto tiene como punto de partida la necesidad de evolución de una herramienta web existente. El propósito principal del proyecto durante su desarrollo se ha centrado en establecer las bases de una completamente nueva plataforma que reemplazará a la existente. Para lograr esto, ha sido necesario realizar una profunda inspección en las tecnologías web existentes: un servidor web y una base de datos SQL debían ser elegidos. Aunque existen muchas alternativas, la tecnología Java ha resultado ser elegida debido a la gran comunidad de desarrolladores que tiene detrás, además de la facilidad que proporciona este lenguaje a la hora de modelarlo usando diagramas UML. Tampoco hay que olvidar que es una tecnología de uso libre de licencia. Apache Tomcat es el servidor de código libre que permite emplear Java Servlets y JSPs para hacer uso de la tecnología de Java. Respecto a la base de datos SQL, el servidor más popular de código libre es MySQL, y cuenta también con una gran comunidad detrás y buenas herramientas de modelado, creación y gestión de la bases de datos. JDBC es el driver que va a permitir comunicar las aplicaciones Java con MySQL. Tras elegir las tecnologías que formarían parte de esta nueva plataforma, el proceso de desarrollo tiene comienzo. Tras una extensa explicación de la instalación del entorno de desarrollo, se han usado diagramas de caso de UML para establecer cuáles son los objetivos principales de la plataforma; los diagramas de clases nos permiten realizar una organización del código java desarrollado de modo que sean fácilmente entendibles las relaciones entre las diferentes clases. La arquitectura de la plataforma queda definida a través de diagramas de despliegue. Por último, diagramas EER van a definir las relaciones entre las tablas creadas en la base de datos. Aparte de estos diagramas, algunos detalles de implementación se van a justificar para tener una mejor comprensión del código desarrollado. Diagramas de secuencia ayudarán en estas explicaciones. Una vez que toda la plataforma haya quedad debidamente definida y desarrollada, se va a realizar una demostración de la misma: se demostrará cómo los objetivos generales han sido alcanzados con el desarrollo actual del proyecto. No obstante, algunos requisitos han sido aclarados para que la plataforma trabaje adecuadamente. Como la intención del proyecto es crecer (no es una versión final), algunas ideas que se han podido llevar acabo han quedado descritas de manera que no se pierdan. Por último, algunos anexos que contienen información importante acerca de la plataforma se han añadido tras la correspondiente explicación de su utilidad, así como una guía de instalación que va a permitir a un nuevo desarrollador tener el proyecto preparado. Junto a este documento, ficheros conteniendo el proyecto desarrollado quedan adjuntos. Estos ficheros son: - Documentación Javadoc. Contiene la información de las clases Java que han sido creadas. - database_model.mwb. Este fichero contiene el modelo de la base de datos para MySQL Workbench. Esto permite, entre otras cosas, generar el script de iniciación de la base de datos para la creación de las tablas. - ScheduleManager.war. El fichero WAR que permite desplegar la plataforma en un servidor Apache Tomcat. - ScheduleManager.zip. El código fuente exportado directamente del proyecto de Netbeans. Contiene todos los paquetes de Java generados, ficheros JSPs, Javascript y CSS que forman parte de la plataforma. - config.properties. Ejemplo del fichero de configuración que permite obtener los nombres de la base de datos - db_init_script.sql. Las consultas SQL necesarias para la creación de la base de datos.
Resumo:
This paper suggests a new strategy to develop CAD applications taking into account some of the most interesting proposals which have recently appeared in the technology development arena. Programming languages, operating systems, user devices, software architecture, user interfaces and user experience are among the elements which are considered for a new development framework. This strategy considers the organizational and architectural aspects of the CAD application together with the development framework. The architectural and organizational aspects are based on the programmed design concept, which can be implemented by means of a three-level software architecture. These levels are the conceptual level based on a declarative language, the mathematical level based on the geometric formulation of the product model and the visual level based on the polyhedral representation of the model as required by the graphic card. The development framework which has been considered is Windows 8. This operating system offers three development environments, one for web pplications (HTML5 + CSS3 + JavaScript), and other for native applications C/C++) and of course yet another for .NET applications (C#, VB, F#, etc.). The use rinterface and user experience for non-web application is described ith XAML (a well known declarative XML language) and the 3D API for games and design applications is DirectX. Additionally, Windows 8 facilitates the use of hybrid solutions, in which native and managed code can interoperate easily. Some of the most remarkable advantages of this strategy are the possibility of targeting both desktop and touch screen devices with the same development framework, the usage of several programming paradigms to apply the most appropriate language to each domain and the multilevel segmentation of developers and designers to facilitate the implementation of an open network of collaborators.
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.
Resumo:
Dissertação apresentada à Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interactivos, realizada sob a orientação científica do Professor Doutor Filipe Miguel Bispo Fidalgo, do Instituto Politécnico de Castelo Branco e da coorientação científica do Professor Doutor Rogério Pais Dionísio, Instituto Politécnico de Castelo Branco.
Resumo:
Trabalho de Projeto apresentado à Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interactivos, realizada sob a orientação científica do Professor Doutor José Carlos Metrôlho, do Instituto Politécnico de Castelo Branco.
Resumo:
O contexto tecnológico em que vivemos é uma realidade. E a tendência é para ser assim também no futuro. Cada vez mais. É o caso das representações de locais e entidades em mapas digitais na web. Na visão de Crocker (2014), esta tendência é ainda mais acentuada, no âmbito das aplicações móveis, como mostram as mais diversas location-based applications. No setor do desporto e da respetiva gestão nem sempre foi fácil desenvolver aplicações, recorrendo a este tipo de representações espaciais. A tecnologia não era fácil e o know-how não era adequadamente qualificado. Mas, as empresas fornecedoras de tecnologia geoespacial simplificaram o desenvolvimento de aplicações web nesta área, através da utilização de application programming interfaces (API). Como refere Svennerberg (2010), estas API’s servem de interface entre um serviço proporcionado por uma empresa, caso da Google Maps (2013) e uma aplicação web ou móvel que utiliza esses serviços. Foi com este objetivo que desenvolvemos uma aplicação web, utilizando as metodologias próprias neste domínio, como a framework de Zachman (2009), tal como foi originalmente adaptada por Whitten e Bentley (2005), onde um dos módulos é precisamente a representação de espaços desportivos, recorrendo à utilização dos serviços da Google Maps. Para além disso, toda a aplicação é suportada numa abordagem Model-View-Control (MVC). Para conseguir representar as instalações desportivas num mapa, criámos uma base de dados MySQL, com dados de longitude e latitude, de cada instalação desportiva. Através de JavaScript criou-se o mapa propriamente dito, indicando o tipo (mapa de estradas, satélite ou street view) e as respetivas opções (nível de zoom, alinhamento, controlo de interface e posicionamente, entre muitas outras opções). O passo seguinte consistiu em passar os dados para o frontend da aplicação web. Para isso, recorreu-se à integração do PHP com as livrarias externas de código JavaSrcipt, criadas especificamente para o efeito (caso da MarkerManager). A implementação destas funcionalidades permite georeferenciar todos os tipos e géneros de espaços desportivos de um concelho, região ou País. Obteve-se ainda know-how, background e massa crítica, para o desenvolvimento de novas funcionalidades. A sua utilização em dispositivos móveis é outra das possibilidades atualmente já em desenvolvimento.
Resumo:
All public school districts, vocational centers, charter schools and special education cooperatives must submit the Annual Claim for Pupil Transportation Reimbursement (ISBE 50-23) electronically online through a web-based system named, "Pupil Transportation Claim Reimbursement System" or "PTCRS."
Resumo:
Cover title.
Resumo:
Trata-se de uma pesquisa qualitativa que buscou investigar a percepção de fatores de risco e de proteção à saúde em adolescentes usuários de redes sociais na internet, caracterizar as experiências emocionais dos adolescentes, usuários das redes sociais da internet e discutir a contribuição das experiências das amizades virtuais para o vínculo afetivo no âmbito presencial. Esse trabalho foi realizado com 13 adolescentes, entre 16 e 18 anos, estudantes do Serviço Nacional de Aprendizagem Comercial de São Paulo (SENAC São Paulo), no período de fevereiro a Julho de 2011, foi utilizado como instrumento para obtenção dos dados o Grupo Focal e o conteúdo foi registrado por meio de um gravador de voz e transcrito posteriormente. A análise dos dados foi realizada através da Grounded Theory. Durante esse estudo foi possível investigar os fatores de risco e de proteção à saúde em adolescentes usuários das redes sociais na internet, destacamos alguns mecanismos importantes de proteção, como o bloqueio de suas informações pessoais a desconhecidos para se protegerem de riscos decorrentes de uso indevido do material postado na rede.
Resumo:
A protein's isoelectric point or pI corresponds to the solution pH at which its net surface charge is zero. Since the early days of solution biochemistry, the pI has been recorded and reported, and thus literature reports of pI abound. The Protein Isoelectric Point database (PIP-DB) has collected and collated these data to provide an increasingly comprehensive database for comparison and benchmarking purposes. A web application has been developed to warehouse this database and provide public access to this unique resource. PIP-DB is a web-enabled SQL database with an HTML GUI front-end. PIP-DB is fully searchable across a range of properties.
Resumo:
The paper aims to represent a bilingual online dictionary as a useful tool helping preservation of the natural languages. The author focuses on the approach that was taken to develop compatible bilingual lexical database for the Bulgarian-Polish online dictionary. A formal model for the dictionary encoding is developed in accordance with the complex structures of the dictionary entries. These structures vary depending on the grammatical characteristics of Bulgarian headwords. The Web-application for presentation of the bilingual dictionary is also describred.
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.