850 resultados para Wavelet Packet and Support Vector Machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine if there was a difference in the self-determined evaluations of work performance and support needs by adults with mental retardation in supported employment and in sheltered workshop environments. The instrument, Job Observation and Behavior Scale: Opportunity for Self-Determination (JOBS: OSD; Brady, Rosenberg, & Frain, 2006), was administered to 38 adults with mental retardation from sheltered workshops and 32 adults with mental retardation from supported employment environments. Cross-tabulations with Chi-square tests and independent samples t-tests were conducted to evaluate differences between the two groups, sheltered workshop and supported work. Two Multivariate Analyses of Variance (MANOVAs) were conducted to determine the effect of work environment on Quality of Performance (QP) and Types of Support (TS) test scores and their subscales. ^ This study found that there were significant differences between the groups on the QP Behavior and Job Duties subscales. The sheltered workshop group perceived themselves as performing significantly better on job duties than the supported work group. Conversely, the supported work group perceived themselves to have better behavior than the sheltered workshop group. However, there were no significant differences between groups in their perception of support needs for the three subscales. ^ The findings imply that work environment affects the self-determined evaluations of work performance by adults with mental retardation. Recommendations for further study include (a) detailing the characteristics of supported work and sheltered workshops that support and/or discourage self-determined behaviors, (b) exploring the behavior of adults with mental retardation in sheltered workshops and supported work environments, and (c) analysis of the support needs for and understanding of them by adults with mental retardation in sheltered workshops and in supported work environments. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attachment and interpersonal theory suggest a sequential pattern of relationships beginning in the earliest stage of development and progressing to social and eventually romantic relationships. Theoretically, cross-sex experiences have an important role in the progression of interpersonal relationships. Despite the prevalence of these theories about the nature of romantic relationship development, the linkage of cross-sex experience (CSE) to romantic relationships has not been established. Indeed, it is an intuitive assumption, especially within Western society and these theories do not consider socio-cultural factors that may influence CSE and relationship satisfaction. This study addresses the varying contextual factors that may contribute to relationship satisfaction and adjustment, aside from CSE, and is divided into two parts. Study 1, addresses CSE, relationship satisfaction, and adjustment in a unique population, ultra-Orthodox Jews. Among this population, social or romantic CSE is limited and sexes are effectively segregated. Study 2, expanded the study to a larger sample of U.S. college students, to assess the linkage of CSE to romantic relationship satisfaction in a more typical Western population. It included social norm and support variables to address the contextual nature of relationship development and satisfaction. Results demonstrated clear differences in the relation between CSE and relationship satisfaction in the two samples. In the first sample CSE was unrelated to relationship satisfaction; nevertheless, relationship satisfaction was associated with adjustment as it is for more typical populations with greater CSE. These results suggested the importance of specifying how social norms and social support relate to CSE, relationship satisfaction and adjustment. The results from the second sample were consistent with the theoretical framework upon which the social/romantic literature is based. CSE was directly connected to relationship satisfaction. As anticipated, CSE, relationship satisfaction, and adjustment also varied as a function of social norms and support. These findings further validate the influence of socio-cultural factors on relationship satisfaction and adjustment. This study contributes to the romantic relationship literature and broadens our understanding of the complex nature of interpersonal and romantic relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classifier support vector machine is used in several problems in various areas of knowledge. Basically the method used in this classier is to end the hyperplane that maximizes the distance between the groups, to increase the generalization of the classifier. In this work, we treated some problems of binary classification of data obtained by electroencephalography (EEG) and electromyography (EMG) using Support Vector Machine with some complementary techniques, such as: Principal Component Analysis to identify the active regions of the brain, the periodogram method which is obtained by Fourier analysis to help discriminate between groups and Simple Moving Average to eliminate some of the existing noise in the data. It was developed two functions in the software R, for the realization of training tasks and classification. Also, it was proposed two weights systems and a summarized measure to help on deciding in classification of groups. The application of these techniques, weights and the summarized measure in the classier, showed quite satisfactory results, where the best results were an average rate of 95.31% to visual stimuli data, 100% of correct classification for epilepsy data and rates of 91.22% and 96.89% to object motion data for two subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il traguardo più importante per la connettività wireless del futuro sarà sfruttare appieno le potenzialità offerte da tutte le interfacce di rete dei dispositivi mobili. Per questo motivo con ogni probabilità il multihoming sarà un requisito obbligatorio per quelle applicazioni che puntano a fornire la migliore esperienza utente nel loro utilizzo. Sinteticamente è possibile definire il multihoming come quel processo complesso per cui un end-host o un end-site ha molteplici punti di aggancio alla rete. Nella pratica, tuttavia, il multihoming si è rivelato difficile da implementare e ancor di più da ottimizzare. Ad oggi infatti, il multihoming è lontano dall’essere considerato una feature standard nel network deployment nonostante anni di ricerche e di sviluppo nel settore, poiché il relativo supporto da parte dei protocolli è quasi sempre del tutto inadeguato. Naturalmente anche per Android in quanto piattaforma mobile più usata al mondo, è di fondamentale importanza supportare il multihoming per ampliare lo spettro delle funzionalità offerte ai propri utenti. Dunque alla luce di ciò, in questa tesi espongo lo stato dell’arte del supporto al multihoming in Android mettendo a confronto diversi protocolli di rete e testando la soluzione che sembra essere in assoluto la più promettente: LISP. Esaminato lo stato dell’arte dei protocolli con supporto al multihoming e l’architettura software di LISPmob per Android, l’obiettivo operativo principale di questa ricerca è duplice: a) testare il roaming seamless tra le varie interfacce di rete di un dispositivo Android, il che è appunto uno degli obiettivi del multihoming, attraverso LISPmob; e b) effettuare un ampio numero di test al fine di ottenere attraverso dati sperimentali alcuni importanti parametri relativi alle performance di LISP per capire quanto è realistica la possibilità da parte dell’utente finale di usarlo come efficace soluzione multihoming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements We are grateful for Dr. Jens Strauss and the other two anonymous reviewers for their insightful comments on an earlier version of this MS, and appreciate members of the IBCAS Sampling Campaign Teams for their assistance in field investigation. This work was supported by the National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), National Natural Science Foundation of China (31322011 and 41371213), and the Thousand Young Talents Program.