954 resultados para Water use efficiency(WUE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluated the evapotranspiration (ETc) and the efficiency of water use (USA) by the fig tree 'Purple Valinhos' submitted to irrigation and mulching (bagacilho of sugar cane crushed) in the first production cycle, at conditions of Botucatu, St. Paul. We used the method of soil water balance and to obtain the reference evapotranspiration method was used Montheit FAO Penman 56. For the assessment of crop coefficients (kc) we adopted the following phenological distribution: phase 1 - between transplanting and 20% of the vegetative (DV), ii) phase 2 - 20 to 80% DV, and iii) phase 3 - fruiting. Observe the cumulative ETc 409.4 and 465.8 mm in 254 days after transplanting (DAT) and averages of 1.47 and 1.67 mm day(-1), with and without mulching (CC and SC). The crop coefficients (kc) mediums were 0.16, 0.43 and 0.49 for SC and 0.18, 0.44 and 0.50 for CC, in phases 1 and 3, respectively. The EUA values decrease with increasing the volume of water received and ranged between 1.65 and 3.32 kg of green figs per m(3) of water for irrigated SC and CC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate gas exchange and photochemical efficiency of cotton cultivars under leaf application of silicon. Therefore, the experiment was conducted in a completely randomized in a factorial 3 x 5, three cotton cultivars ('BRS Topazio', 'BRS Safira' and 'BRS Rubi'), five silicon concentrations (0, 50, 100, 150, 200 mg L-1) and four replications. Gas exchange and photochemical efficiency were determined by measuring the rate of CO2 assimilation, transpiration, stomatal conductance, internal CO2 concentration, instantaneous efficiency in water use, instantaneous carboxylation efficiency, initial fluorescence, maximum quantum efficiency of the variable and photosystem II (PSII). The data variables were subjected to analysis of variance and regression test comparison of means. There were significant differences in gas exchange and photochemical efficiency in response to concentrations of silicon. There were also significant differences among cotton cultivars evaluated. In cultivar 'BRS Top zio', the application of silicon increased CO2 assimilation rate and quantum efficiency of PSII. In 'BRS Safira' silicon reduced the rate of assimilation and internal CO2 concentration. In 'BRS Rubi' element increased the fluorescence of chlorophyll 'a' and quantum efficiency of photosystem II, and reduced the rate of assimilation and internal CO2 concentration and stomatal conductance. Silicate fertilization provided 'BRS Topazio' to express better photosynthetic rate in relation to 'BRS Safira' and 'BRS Rubi'. No damage occurred in PSII when 'BRS Top zio', 'BRS Safira' and 'BRS Rubi' cultivars received silicon as supplementary nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate extreme water table depths in a watershed, using methods for geographical spatial data analysis. Groundwater spatio-temporal dynamics was evaluated in an outcrop of the Guarani Aquifer System. Water table depths were estimated from monitoring of water levels in 23 piezometers and time series modeling available from April 2004 to April 2011. For generation of spatial scenarios, geostatistical techniques were used, which incorporated into the prediction ancillary information related to the geomorphological patterns of the watershed, using a digital elevation model. This procedure improved estimates, due to the high correlation between water levels and elevation, and aggregated physical sense to predictions. The scenarios showed differences regarding the extreme levels - too deep or too shallow ones - and can subsidize water planning, efficient water use, and sustainable water management in the watershed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R-2 = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.