946 resultados para Water Supply System
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
As atividades dos estabelecimentos de abate de frangos são conhecidas por utilizarem grandes volumes de água durante seus processos, principalmente no processo de resfriamento das carcaças de frangos. Parte desse volume utilizado se faz necessário, em cumprimento à legislação que determina que cada tanque do sistema de pré-resfriadores contínuos por imersão deve ser completamente esvaziado, limpo e desinfetado no final de cada período de trabalho (oito horas). O objetivo deste estudo foi comparar a carga microbiana das águas do sistema de resfriamento e das carcaças de frango ao final de oito, dezesseis e vinte e quatro horas de trabalho do abatedouro, para possível redução do número de vezes do completo esvaziamento dos tanques do sistema de resfriamento. Foram avaliadas, por meio de métodos convencionais microbiológicos e físico-químicos, amostras da água de abastecimento (n=69), visando a evitar possível interferência nas contagens das águas do sistema de resfriamento, amostras de carcaças de frango antes (n=345) e após (n=345) sua passagem pelo sistema de resfriamento e amostras de águas do último estágio do sistema de resfriamento de carcaças (n=69). Os resultados obtidos demonstraram que não houve diferença significativa na carga microbiana das amostras entre as três jornadas de trabalho do estabelecimento, sugerindo que a redução é segura, diminuindo assim o volume de águas residuais e seu impacto no meio ambiente, bem como melhorando o uso racional do tempo de processamento.
Resumo:
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.
Resumo:
Access to fluoridated water is a known protective factor against dental caries. In 1974, fluoridation of the public water supply became mandatory by law in Brazil, resulting in improved coverage, especially in more developed regions of the country. Coverage increased across the country as a priority under the national oral health policy. This article systematizes information on the implementation and expansion of fluoridation in Sao Paulo State from 1956 to 2009, using secondary data from technical reports, official documents, and the Information System for Surveillance of Water Quality for Human Consumption (SISAGUA). In 2009, fluoridation covered 546 of 645 counties in Sao Paulo State (84.7%), reaching 85.1% of the total population and 93.5% of the population with access to the public water supply. The results indicate that fluoridation has been consolidated as part of State health policy. However, the challenge remains to implement and maintain fluoridation in 99 counties, benefiting 6.2 million inhabitants that are still excluded from this service.
Resumo:
This paper presents the development of a mathematical model to optimize the management and operation of the Brazilian hydrothermal system. The system consists of a large set of individual hydropower plants and a set of aggregated thermal plants. The energy generated in the system is interconnected by a transmission network so it can be transmitted to centers of consumption throughout the country. The optimization model offered is capable of handling different types of constraints, such as interbasin water transfers, water supply for various purposes, and environmental requirements. Its overall objective is to produce energy to meet the country's demand at a minimum cost. Called HIDROTERM, the model integrates a database with basic hydrological and technical information to run the optimization model, and provides an interface to manage the input and output data. The optimization model uses the General Algebraic Modeling System (GAMS) package and can invoke different linear as well as nonlinear programming solvers. The optimization model was applied to the Brazilian hydrothermal system, one of the largest in the world. The system is divided into four subsystems with 127 active hydropower plants. Preliminary results under different scenarios of inflow, demand, and installed capacity demonstrate the efficiency and utility of the model. From this and other case studies in Brazil, the results indicate that the methodology developed is suitable to different applications, such as planning operation, capacity expansion, and operational rule studies, and trade-off analysis among multiple water users. DOI: 10.1061/(ASCE)WR.1943-5452.0000149. (C) 2012 American Society of Civil Engineers.
Resumo:
Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
This paper presents a multifactor approach for performance assessment of Water Users Associations (WUAs) in Uzbekistan in order to identify the drivers for improved and effi cient performance of WUAs. The study was carried out in the Fergana Valley where the WUAs were created along the South Fergana Main Canal during the last 10 years. The farmers and the employees of 20 WUAs were questioned about the WUAs’ activities and the quantitative and qualitative data were obtained. This became a base for the calculation of 36 indicators divided into 6 groups: Water supply, technical conditions, economic conditions, social and cultural conditions, organizational conditions and information conditions. All the indicators assessed with a differentiated point system adjusted for subjectivity of several of them give the total maximal result for the associations of 250 point. The WUAs of the Fergana Valley showed the score between 145 and 219 points, what refl ects a highly diverse level of the WUAs performance in the region. The analysis of the indicators revealed that the key points of the WUA’s success are the organizational and institutional conditions including the participatory factors and awareness of both the farmers and employees about the work of WUA. The research showed that the low performance of the WUAs is always explained by the low technical and economic conditions along with weak organization and information dissemination conditions. It is clear that it is complicated to improve technical and economic conditions immediately because they are cost-based and cost-induced. However, it is possible to improve the organizational conditions and to strengthen the institutional basis via formal and information institutions which will gradually lead to improvement of economic and technical conditions of WUAs. Farmers should be involved into the WUA Governance and into the process of making common decisions and solving common problems together via proper institutions. Their awareness can also be improved by leading additional trainings for increasing farmers’ agronomic and irrigation knowledge, teaching them water saving technologies and acquainting them with the use of water measuring equipment so it can bring reliable water supply, transparent budgeting and adequate as well as equitable water allocation to the water users.
Resumo:
For over 100 years, water policy and man agement in Spain have been instruments of economic and social transformation. Sig nificant public and private investments in water supply infrastructures have equipped Spain with over 1,200 major dams, 20 major desalination plants ? with more under construction ? and several interbasin water transfers. The system has been apparently very successful, with an increase in overall water availability, strong associated eco nomic development and few urban water supply shortages. This success has been supported by a widespread consensus among a strong and largely closed water policy community made up of water manag ers, irrigators, electric (hydropower) utilities and developers.
Resumo:
Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.
Resumo:
Water is fundamental to human life and the availability of freshwater is often a constraint on human welfare and economic development. Consequently, the potential effects of global changes on hydrology and water resources are considered among the most severe and vital ones. Water scarcity is one of the main problems in the rural communities of Central America, as a result of an important degradation of catchment areas and the over-exploitation of aquifers. The present Thesis is focused on two critical aspects of global changes over water resources: (1) the potential effects of climate change on water quantity and (2) the impacts of land cover and land use changes on the hydrological processes and water cycle. Costa Rica is among the few developing countries that have recently achieved a land use transition with a net increase in forest cover. Osa Region in South Pacific Costa Rica is an appealing study site to assess water supply management plans and to measure the effects of deforestation, forest transitions and climate change projections reported in the region. Rural Community Water Supply systems (ASADAS) in Osa are dealing with an increasing demand of freshwater due to the growing population and the change in the way of life in the rural livelihoods. Land cover mosaics which have resulted from the above mentioned processes are characterized by the abandonment of marginal farmland with the spread over these former grasslands of high return crops and the expansion of secondary forests due to reforestation initiatives. These land use changes have a significant impact on runoff generation in priority water-supply catchments in the humid tropics, as evidenced by the analysis of the Tinoco Experimental Catchment in the Southern Pacific area of Costa Rica. The monitoring system assesses the effects of the different land uses on the runoff responses and on the general water cycle of the basin. Runoff responses at plot scale are analyzed for secondary forests, oil palm plantations, forest plantations and grasslands. The Oil palm plantation plot presented the highest runoff coefficient (mean RC=32.6%), twice that measured under grasslands (mean RC=15.3%) and 20-fold greater than in secondary forest (mean RC=1.7%). A Thornthwaite-type water balance is proposed to assess the impact of land cover and climate change scenarios over water availability for rural communities in Osa Region. Climate change projections were obtained by the downscaling of BCM2, CNCM3 and ECHAM5 models. Precipitation and temperature were averaged and conveyed by the A1B, A2 and B1 IPCC climate scenario for 2030, 2060 and 2080. Precipitation simulations exhibit a positive increase during the dry season for the three scenarios and a decrease during the rainy season, with the highest magnitude (up to 25%) by the end of the 21st century under scenario B1. Monthly mean temperature simulations increase for the three scenarios throughout the year with a maximum increase during the dry season of 5% under A1B and A2 scenarios and 4% under B1 scenario. The Thornthwaite-type Water Balance model indicates important decreases of water surplus for the three climate scenarios during the rainy season, with a maximum decrease on May, which under A1B scenario drop up to 20%, under A2 up to 40% and under B1 scenario drop up to almost 60%. Land cover scenarios were created taking into account current land cover dynamics of the region. Land cover scenario 1 projects a deforestation situation, with forests decreasing up to 15% due to urbanization of the upper catchment areas; land cover scenario 2 projects a forest recovery situation where forested areas increase due to grassland abandonment on areas with more than 30% of slope. Deforestation scenario projects an annual water surplus decrease of 15% while the reforestation scenario projects a water surplus increase of almost 25%. This water balance analysis indicates that climate scenarios are equal contributors as land cover scenarios to future water resource estimations.