887 resultados para Wading Birds Charadrii
Resumo:
Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.
Resumo:
Many proximate factors determine a bird’s laying date, including environmental and social stimuli as well as individual responses to internal and external factors. However, the relative importance of these factors has not been experimentally demonstrated. Here we show that (i) large differences in the onset of first clutches between different populations result from variation in different responses to photoperiod and not from variation in responses to any other proximate factors and (ii) the same response mechanism causes maladaptive laying dates in habitats modified by humans. We present, to our knowledge, the first experimental demonstration that a single response mechanism is responsible for evolutionary adaptive intraspecific variation in a vertebrate life history trait.
Resumo:
At least 50 species of birds are represented in 241 bird bones from five late Pleistocene and Holocene archaeological sites on New Ireland (Bismarck Archipelago, Papua New Guinea). The bones include only two of seabirds and none of migrant shorebirds or introduced species. Of the 50 species, at least 12 (petrel, hawk, megapode, quail, four rails, cockatoo, two owls, and crow) are not part of the current avifauna and have not been recorded previously from New Ireland. Larger samples of bones undoubtedly would indicate more extirpated species and refine the chronology of extinction. Humans have lived on New Ireland for ca. 35,000 years, whereas most of the identified bones are 15,000 to 6,000 years old. It is suspected that most or all of New Ireland’s avian extinction was anthropogenic, but this suspicion remains undetermined. Our data show that significant prehistoric losses of birds, which are well documented on Pacific islands more remote than New Ireland, occurred also on large, high, mostly forested islands close to New Guinea.
Resumo:
Batrachotoxins, including many congeners not previously described, were detected, and relative amounts were measured by using HPLC-mass spectrometry, in five species of New Guinean birds of the genus Pitohui as well as a species of a second toxic bird genus, Ifrita kowaldi. The alkaloids, identified in feathers and skin, were batrachotoxinin-A cis-crotonate (1), an allylically rearranged 16-acetate (2), which can form from 1 by sigmatropic rearrangement under basic conditions, batrachotoxinin-A and an isomer (3 and 3a, respectively), batrachotoxin (4), batrachotoxinin-A 3′-hydroxypentanoate (5), homobatrachotoxin (6), and mono- and dihydroxylated derivatives of homobatrachotoxin. The highest levels of batrachotoxins were generally present in the contour feathers of belly, breast, or legs in Pitohui dichrous, Pitohui kirhocephalus, and Ifrita kowaldi. Lesser amounts are found in head, back, tail, and wing feathers. Batrachotoxin (4) and homobatrachotoxin (6) were found only in feathers and not in skin. The levels of batrachotoxins varied widely for different populations of Pitohui and Ifrita, a result compatible with the hypothesis that these birds are sequestering toxins from a dietary source.
Resumo:
Paired Ig-like receptors (PIR) that can reciprocally modulate cellular activation have been described in mammals. In the present study, we searched expressed sequence tag databases for PIR relatives to identify chicken expressed sequence tags predictive of ≈25% amino acid identity to mouse PIR. Rapid amplification of cDNA ends (RACE)-PCR extension of expressed sequence-tag sequences using chicken splenic cDNA as a template yielded two distinct cDNAs, the sequence analysis of which predicted protein products with related extracellular Ig-like domains. Chicken Ig-like receptor (CHIR)-A was characterized by its transmembrane segment with a positively charged histidine residue and short cytoplasmic tail, thereby identifying CHIR-A as a candidate-activating receptor. Conversely, CHIR-B was characterized by its nonpolar transmembrane segment and cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs, indicating that it may serve as an inhibitory receptor. The use of CHIR amino acid sequences in a search for other PIR relatives led to the recognition of mammalian Fc receptors as distantly related genes. Comparative analyses based on amino acid sequences and three-dimensional protein structures provided molecular evidence for common ancestry of the PIR and Fc receptor gene families.