959 resultados para Virus-like Particles
Resumo:
O vírus latente da couve (Cole latent virus, CoLV), gênero Carlavirus, foi estudado, por microscopia eletrônica de transmissão e técnicas bioquímicas, em relação à ultra-estrutura das células infetadas de Chenopodium quinoa, e de sua associação com os cloroplastos. O CoLV foi observado como partículas dispersas pelo citoplasma entremeadas com vesículas membranosas e ribossomos e/ou como densas massas de partículas. Estes partículas reagiram por imunomarcação com anti-soro policlonal para o CoLV. Morfologicamente, cloroplastos, mitocôndrias e núcleos mostraram-se inalterados e partículas virais não foram encontradas dentro dessas organelas. Entretanto, agregados de partículas virais foram freqüentemente vistos em associação com a membrana externa dos cloroplastos e ocasionalmente com peroxissomos. Cloroplastos foram purificados em gradiente de Percoll e as proteínas e os RNA foram extraídos e analisados, respectivamente, por Western blot e Northern blot. Proteína capsidial e RNA associados ao CoLV não foram detectados nessa organela. Os resultados aqui obtidos indicam que a associação CoLV/cloroplastos, observada nos estudos de microscopia eletrônica, é possivelmente um evento casual dentro da célula hospedeira e que o vírus não se multiplica dentro dessa organela.
Resumo:
BackgroundParacoccidioidomycosis is not the most common fungal disease in patients infected with human immunodeficiency virus (HIV), except for endemic regions in Latin America countriesCaseA 33-year-old man with HIV presented with mulberry-like lesions on the palate The diagnosis was made by exfoliative cytology and Papanicolaou staining Microscopic analysis revealed fungal structures with birefringent walls and exosporulation conferring an airplane radial motor appearance, or even bowel-like or goblet-like forms compatible with Paracoccidioides brasiliensisConclusionThis process spares the immunosuppressed patient from under going invasive biopsy procedures (Acta Cytol 2010,54 1127-1129)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Resumo:
Pós-graduação em Microbiologia - IBILCE