681 resultados para Video tracking
Resumo:
In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
abstract With many visual speech animation techniques now available, there is a clear need for systematic perceptual evaluation schemes. We describe here our scheme and its application to a new video-realistic (potentially indistinguishable from real recorded video) visual-speech animation system, called Mary 101. Two types of experiments were performed: a) distinguishing visually between real and synthetic image- sequences of the same utterances, ("Turing tests") and b) gauging visual speech recognition by comparing lip-reading performance of the real and synthetic image-sequences of the same utterances ("Intelligibility tests"). Subjects that were presented randomly with either real or synthetic image-sequences could not tell the synthetic from the real sequences above chance level. The same subjects when asked to lip-read the utterances from the same image-sequences recognized speech from real image-sequences significantly better than from synthetic ones. However, performance for both, real and synthetic, were at levels suggested in the literature on lip-reading. We conclude from the two experiments that the animation of Mary 101 is adequate for providing a percept of a talking head. However, additional effort is required to improve the animation for lip-reading purposes like rehabilitation and language learning. In addition, these two tasks could be considered as explicit and implicit perceptual discrimination tasks. In the explicit task (a), each stimulus is classified directly as a synthetic or real image-sequence by detecting a possible difference between the synthetic and the real image-sequences. The implicit perceptual discrimination task (b) consists of a comparison between visual recognition of speech of real and synthetic image-sequences. Our results suggest that implicit perceptual discrimination is a more sensitive method for discrimination between synthetic and real image-sequences than explicit perceptual discrimination.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
The study of granular material is of great interest to many researchers in both engineering and science communities. The importance of such a study derives from its complex rheological character and also its significant role in a wide range of industrial applications, such as coal, food, plastics, pharmaceutical, powder metallurgy and mineral processing. A number of recent reports have been focused on the physics of non-cohesive granular material submitted to vertical vibration in either experimental or theoretical approaches. Such a kind of system can be used to separate, mix and dry granular materials in industries. It exhibits different instability behaviour on its surface when under vertical vibration, for example, avalanching, surface fluidization and surface wave, and these phenomena have attracted particular interest of many researchers. However, its fundamental understanding of the instability mechanism is not yet well-understood. This paper is therefore to study the dynamics of granular motion in such a kind of system using Positron Emission Particle Tracking (PEPT), which allows the motion of a single tracer particle to be followed in a non-invasive way. Features of the solids motion such as cycle frequency and dispersion index were investigated via means of authors’ specially-written programmes. Regardless of the surface behaviour, particles are found to travel in rotational movement in horizontal plane. Particle cycle frequency is found to increase strongly with increasing vibration amplitude. Particle dispersion also increased strongly with vibration amplitude. Horizontal dispersion is observed to always exceed vertical dispersion.
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
El video expone un panorama general de la Biblioteca de la Universidad del Rosario; contiene información sobre las diferentes sedes, horarios, los principales recursos y servicios que se ofrecen a los usuarios. A través de este medio audiovisual el espectador podrá conocer a grandes rasgos cómo la Biblioteca de la Universidad del Rosario ha pasado a ser un moderno centro de apoyo a las labores académicas, investigativas y culturales de la Universidad.
Resumo:
There is a wealth of open educational content in audio and video formats available via iTunes U, one of the services offered especially for education via iTunes. There are details of how to get started as well as an informative video to help you. Details of how to get started with sharing content can be found for developers.
Resumo:
"Rob, Vikki, Shireen, Muzz and Delia have been randomly selected to work together to develop a presentation entitled 'The barriers to learning'. It's not an easy ride. The following 10 episodes show the journey, from their first meeting through to their impressions of the presentation and working together". Produced by the LearnHigher CETL Three areas covered by the site as follows Listening and Interpersonal Skills - the University of Leeds Oral Presentations - Brunel University Group Work - Bradford University
Resumo:
Vintage video (1986) on laser safety, presented by Dr. Gillian Rice. This is a 37 minute video, explaining the hazards which are likely to be encountered and ways to reduce those hazards in teaching and research laboratories in higher education. Presented in 5 parts: Part 1 (1:49) Laser radiation and the body Part 2 (8:49) Classes of laser Part 3 (13:32) Safety measures Part 4 (21:32) Other risks: precautions Part 5 (31:49) Summary
Resumo:
This video is for students with specific learning differences that mean that they are entitled to use a computer to type written examinations rather than writing them longhand. It show them how to use the special AER workstations that provide a cut-down version of Microsoft Word and absolutely no access to the Internet.
Resumo:
This short video is designed to make you think about the safety aspects of working with lasers within laser laboratories. Postgraduates and research fellows work with many different types of lasers in a variety of different experimental conditions. These lasers are often more powerful than those used as an undergraduate and require additional safety practices. The video was demonstrated to the EUNIS 2008 conference Aarhus, Denmark, and was a finalist in the Dorup E-Learning Award.