986 resultados para Ventricular Myocytes
Resumo:
OBJECTIVES: The Contegra bioprosthesis (valved heterologous bovine jugular vein) is used for reconstruction of the right ventricular outflow tract (RVOT) in congenital heart malformations and pulmonary valve replacement in different settings. Compared to pulmonary homografts, the Contegra conduit is readily available 'on the shelf'. So far, its use was mainly described in children. The aim of this study is to evaluate the feasibility and the outcome of Contegra graft implantation in the adult. METHODS: Between November 1999 and December 2007, a total of 32 Contegra grafts were implanted in 31 patients (24 men and 7 women), with a mean age of 35.7+/-10.5 years (range 18-54 years). All operations have been completed through median sternotomy with cardiopulmonary bypass. Indications included: Ross procedure for aortic valve disease (n=22); re-operation of corrected Fallot-tetralogy (n=5); isolated pulmonary valve disease (n=2); re-operation of double outlet right ventricle (DORV) (n=1); pulmonary stenosis in congenital dilated cardiomyopathy (DCM) (n=1). Conduit sizes included 22 mm (n=31), 20 mm (n=1). RESULTS: There was no hospital mortality and no valved conduit related early morbidity. In the median follow-up of 38 months (range 1-99 months) of 28 patients there was one late death, not conduit related (total mortality 3.6%). Re-operation for symptomatic graft stenosis was realised in two patients, 7 and 16 months after primo-implantation, corresponding to graft related late morbidity of 7.1%. CONCLUSIONS: In this small review of 32 operations using the Contegra graft for RVOT reconstruction in adult cardiac surgery for different indications, we observed good postoperative mid-term results concerning conduit function. Mean transpulmonary pressure gradients remain low (13.3+/-6.6 mmHg postoperative, 14.5+/-7.9 mmHg at follow-up). The use of the Contegra graft seems to be a good alternative to the homograft with low operative mortality and morbidity. Long-term outcome data are not available and further investigations must be performed to evaluate results.
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with mutations in the cardiac ryanodine receptor gene (Ryr2) in the majority of patients. Previous studies of CPVT patients mainly involved probands, so current insight into disease penetrance, expression, genotype-phenotype correlations, and arrhythmic event rates in relatives carrying the Ryr2 mutation is limited. METHODS AND RESULTS: One-hundred sixteen relatives carrying the Ryr2 mutation from 15 families who were identified by cascade screening of the Ryr2 mutation causing CPVT in the proband were clinically characterized, including 61 relatives from 1 family. Fifty-four of 108 antiarrhythmic drug-free relatives (50%) had a CPVT phenotype at the first cardiological examination, including 27 (25%) with nonsustained ventricular tachycardia. Relatives carrying a Ryr2 mutation in the C-terminal channel-forming domain showed an increased odds of nonsustained ventricular tachycardia (odds ratio, 4.1; 95% CI, 1.5-11.5; P=0.007, compared with N-terminal domain) compared with N-terminal domain. Sinus bradycardia was observed in 19% of relatives, whereas other supraventricular dysrhythmias were present in 16%. Ninety-eight (most actively treated) relatives (84%) were followed up for a median of 4.7 years (range, 0.3-19.0 years). During follow-up, 2 asymptomatic relatives experienced exercise-induced syncope. One relative was not being treated, whereas the other was noncompliant. None of the 116 relatives died of CPVT during a 6.7-year follow-up (range, 1.4-20.9 years). CONCLUSIONS: Relatives carrying an Ryr2 mutation show a marked phenotypic diversity. The vast majority do not have signs of supraventricular disease manifestations. Mutation location may be associated with severity of the phenotype. The arrhythmic event rate during follow-up was low.
Resumo:
ECG criteria for left ventricular hypertrophy (LVH) have been almost exclusively elaborated and calibrated in white populations. Because several interethnic differences in ECG characteristics have been found, the applicability of these criteria to African individuals remains to be demonstrated. We therefore investigated the performance of classic ECG criteria for LVH detection in an African population. Digitized 12-lead ECG tracings were obtained from 334 African individuals randomly selected from the general population of the Republic of Seychelles (Indian Ocean). Left ventricular mass was calculated with M-mode echocardiography and indexed to body height. LVH was defined by taking the 95th percentile of body height-indexed LVM values in a reference subgroup. In the entire study sample, 16 men and 15 women (prevalence 9.3%) were finally declared to have LVH, of whom 9 were of the reference subgroup. Sensitivity, specificity, accuracy, and positive and negative predictive values for LVH were calculated for 9 classic ECG criteria, and receiver operating characteristic curves were computed. We also generated a new composite time-voltage criterion with stepwise multiple linear regression: weighted time-voltage criterion=(0.2366R(aVL)+0.0551R(V5)+0.0785S(V3)+ 0.2993T(V1))xQRS duration. The Sokolow-Lyon criterion reached the highest sensitivity (61%) and the R(aVL) voltage criterion reached the highest specificity (97%) when evaluated at their traditional partition value. However, at a fixed specificity of 95%, the sensitivity of these 10 criteria ranged from 16% to 32%. Best accuracy was obtained with the R(aVL) voltage criterion and the new composite time-voltage criterion (89% for both). Positive and negative predictive values varied considerably depending on the concomitant presence of 3 clinical risk factors for LVH (hypertension, age >/=50 years, overweight). Median positive and negative predictive values of the 10 ECG criteria were 15% and 95%, respectively, for subjects with none or 1 of these risk factors compared with 63% and 76% for subjects with all of them. In conclusion, the performance of classic ECG criteria for LVH detection was largely disparate and appeared to be lower in this population of East African origin than in white subjects. A newly generated composite time-voltage criterion might provide improved performance. The predictive value of ECG criteria for LVH was considerably enhanced with the integration of information on concomitant clinical risk factors for LVH.
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
Introducción y objetivos. Se ha señalado que, en la miocardiopatía hipertrófica (MCH), la desorganización de las fibras regionales da lugar a segmentos en los que la deformación es nula o está gravemente reducida, y que estos segmentos tienen una distribución no uniforme en el ventrículo izquierdo (VI). Esto contrasta con lo observado en otros tipos de hipertrofia como en el corazón de atleta o la hipertrofia ventricular izquierda hipertensiva (HVI-HT), en los que puede haber una deformación cardiaca anormal, pero nunca tan reducida como para que se observe ausencia de deformación. Así pues, proponemos el empleo de la distribución de los valores de strain para estudiar la deformación en la MCH. Métodos. Con el empleo de resonancia magnética marcada (tagged), reconstruimos la deformación sistólica del VI de 12 sujetos de control, 10 atletas, 12 pacientes con MCH y 10 pacientes con HVI-HT. La deformación se cuantificó con un algoritmo de registro no rígido y determinando los valores de strain sistólico máximo radial y circunferencial en 16 segmentos del VI. Resultados. Los pacientes con MCH presentaron unos valores medios de strain significativamente inferiores a los de los demás grupos. Sin embargo, aunque la deformación observada en los individuos sanos y en los pacientes con HVI-HT se concentraba alrededor del valor medio, en la MCH coexistían segmentos con contracción normal y segmentos con una deformación nula o significativamente reducida, con lo que se producía una mayor heterogeneidad de los valores de strain. Se observaron también algunos segmentos sin deformación incluso en ausencia de fibrosis o hipertrofia. Conclusiones. La distribución de strain caracteriza los patrones específicos de deformación miocárdica en pacientes con diferentes etiologías de la HVI. Los pacientes con MCH presentaron un valor medio de strain significativamente inferior, así como una mayor heterogeneidad de strain (en comparación con los controles, los atletas y los pacientes con HVI-HT), y tenían regiones sin deformación.
Resumo:
OBJECTIVES: The aim of this study was to evaluate the risk factors associated with Contegra graft (Medtronic Minneapolis, MN, USA) infection after reconstruction of the right ventricular outflow tract. METHODS: One hundred and six Contegra grafts were implanted between April 1999 and April 2010 for the Ross procedure (n = 46), isolated pulmonary valve replacement (n = 32), tetralogy of Fallot (n = 24), double-outlet right ventricle (n = 7), troncus arteriosus (n = 4), switch operation (n = 1) and redo of pulmonary valve replacement (n = 2). The median age of the patients was 13 years (range 0-54 years). A follow-up was completed in all cases with a median duration of 7.6 years (range 1.7-12.7 years). RESULTS: There were 3 cases of in-hospital mortality. The survival rate during 7 years was 95.7%. Despite the lifelong endocarditis prophylaxis, Contegra graft infection was diagnosed in 12 (11.3%) patients at a median time of 4.4 years (ranging from 0.4 to 8.7 years). Univariate analysis of preoperative, perioperative and postoperative variables was performed and the following risk factors for time to infection were identified: female gender with a hazard ratio (HR) of 0.19 (P = 0.042), systemic-to-pulmonary shunt (HR 6.46, P < 0.01), hypothermia (HR 0.79, P = 0.014), postoperative renal insufficiency (HR 11.97, P = 0.015) and implantation of permanent pacemaker during hospitalization (HR 5.29, P = 0.075). In 2 cases, conservative therapy was successful and, in 10 patients, replacement of the infected valve was performed. The Contegra graft was replaced by a homograft in 2 cases and by a new Contegra graft in 8 cases. Cox's proportional hazard model indicated that time to graft infection was significantly associated with tetralogy of Fallot (HR 0.06, P = 0.01), systemic-to-pulmonary shunt (HR 64.71, P < 0.01) and hypothermia (HR 0.77, P < 0.01). CONCLUSION: Contegra graft infection affected 11.3% of cases in our cohort, and thus may be considered as a frequent entity that can be predicted by both intraoperative and early postoperative factors. After the diagnosis of infection associated with the Contegra graft was confirmed, surgical treatment was the therapy of choice.
Resumo:
Idiopathic premature ventricular complexes originating from the ventricular outflow tract: evaluation, prognosis and management The prognosis of ventricular premature complexes (VPC) in the absence of heart disease is considered benign. VPC usually originate from the right or, less commonly, left ventricular outflow tract. QRS complexes therefore usually assume a left bundle branch block and inferior axis morphology. These VPC, particularly if very frequent (> 20,000 per day), may adversely affect left ventricular function and their suppression can restore normal function. Moreover, there is a clinical overlap with arrhythmogenic right ventricular dysplasia and this diagnosis should be considered when facing a left bundle branch block shaped VPC. However, the prognosis of outflow tract VPC is good for appropriately selected patients with normal left ventricular function, absence of syncope or ventricular tachycardia, and no evidence of cardiac disease.
Resumo:
In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
ABSTRACT: Transapical aortic valve replacement is an established technique performed in high-risk patients with symptomatic aortic valve stenosis and vascular disease contraindicating trans-vascular and trans-aortic procedures. The presence of a left ventricular apical diverticulum is a rare event and the treatment depends on dimensions and estimated risk of embolisation, rupture, or onset of ventricular arrhythmias. The diagnosis is based on standard cardiac imaging and symptoms are very rare. In this case report we illustrate our experience with a 81 years old female patient suffering from symptomatic aortic valve stenosis, respiratory disease, chronic renal failure and severe peripheral vascular disease (logistic euroscore: 42%), who successfully underwent a transapical 23 mm balloon-expandable stent-valve implantation through an apical diverticulum of the left ventricle. Intra-luminal thrombi were absent and during the same procedure were able to treat the valve disease and to successfully exclude the apical diverticulum without complications and through a mini thoracotomy. To the best of our knowledge, this is the first time that a transapical procedure is successfully performed through an apical diverticulum.
Resumo:
OBJECTIVES: The reconstruction of the right ventricular outflow tract (RVOT) with valved conduits remains a challenge. The reoperation rate at 5 years can be as high as 25% and depends on age, type of conduit, conduit diameter and principal heart malformation. The aim of this study is to provide a bench model with computer fluid dynamics to analyse the haemodynamics of the RVOT, pulmonary artery, its bifurcation, and left and right pulmonary arteries that in the future may serve as a tool for analysis and prediction of outcome following RVOT reconstruction. METHODS: Pressure, flow and diameter at the RVOT, pulmonary artery, bifurcation of the pulmonary artery, and left and right pulmonary arteries were measured in five normal pigs with a mean weight of 24.6 ± 0.89 kg. Data obtained were used for a 3D computer fluid-dynamics simulation of flow conditions, focusing on the pressure, flow and shear stress profile of the pulmonary trunk to the level of the left and right pulmonary arteries. RESULTS: Three inlet steady flow profiles were obtained at 0.2, 0.29 and 0.36 m/s that correspond to the flow rates of 1.5, 2.0 and 2.5 l/min flow at the RVOT. The flow velocity profile was constant at the RVOT down to the bifurcation and decreased at the left and right pulmonary arteries. In all three inlet velocity profiles, low sheer stress and low-velocity areas were detected along the left wall of the pulmonary artery, at the pulmonary artery bifurcation and at the ostia of both pulmonary arteries. CONCLUSIONS: This computed fluid real-time model provides us with a realistic picture of fluid dynamics in the pulmonary tract area. Deep shear stress areas correspond to a turbulent flow profile that is a predictive factor for the development of vessel wall arteriosclerosis. We believe that this bench model may be a useful tool for further evaluation of RVOT pathology following surgical reconstructions.