951 resultados para Variational calculus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-level language program compilation strategies can be proven correct by modelling the process as a series of refinement steps from source code to a machine-level description. We show how this can be done for programs containing recursively-defined procedures in the well-established predicate transformer semantics for refinement. To do so the formalism is extended with an abstraction of the way stack frames are created at run time for procedure parameters and variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an axiomatisation of the Timed Interval Calculus, a set-theoretic notation for expressing properties of time intervals. We implement the axiomatisation in the Ergo theorem prover in order to allow the machine-checked proof of laws for reasoning about predicates expressed using interval operators. These laws can be then used in the machine-assisted verification of real-time applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time refinement calculus is an extension of the standard refinement calculus in which programs are developed from a precondition plus post-condition style of specification. In addition to adapting standard refinement rules to be valid in the real-time context, specific rules are required for the timing constructs such as delays and deadlines. Because many real-time programs may be nonterminating, a further extension is to allow nonterminating repetitions. A real-time specification constrains not only what values should be output, but when they should be output. Hence for a program to implement such a specification, it must guarantee to output values by the specified times. With standard programming languages such guarantees cannot be made without taking into account the timing characteristics of the implementation of the program on a particular machine. To avoid having to consider such details during the refinement process, we have extended our real-time programming language with a deadline command. The deadline command takes no time to execute and always guarantees to meet the specified time; if the deadline has already passed the deadline command is infeasible (miraculous in Dijkstra's terminology). When such a realtime program is compiled for a particular machine, one needs to ensure that all execution paths leading to a deadline are guaranteed to reach it by the specified time. We consider this checking as part of an extended compilation phase. The addition of the deadline command restores for the real-time language the advantage of machine independence enjoyed by non-real-time programming languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a language and a predicative semantics to model concurrent real-time programs. We consider different communication paradigms between the concurrent components of a program: communication via shared variables and asynchronous message passing (for different models of channels). The semantics is the basis for a refinement calculus to derive machine-independent concurrent real-time programs from specifications. We give some examples of refinement laws that deal with concurrency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine the replica approach from statistical physics with a variational approach to analyze learning curves analytically. We apply the method to Gaussian process regression. As a main result we derive approximative relations between empirical error measures, the generalization error and the posterior variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, within the VISDEM project (EPSRC funded EP/C005848/1), a novel variational approximation framework has been developed for inference in partially observed, continuous space-time, diffusion processes. In this technical report all the derivations of the variational framework, from the initial work, are provided in detail to help the reader better understand the framework and its assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel methodology to infer parameters of probabilistic models whose output noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in parameters to nonlinear multi-layer perceptrons (MLPs). We used an EM algorithm combined with variational approximation, the evidence procedure, and an optimisation algorithm. The technique was tested on two regression applications. The first one is a synthetic dataset and the second is gas forward contract prices data from the UK energy market. The results showed that forecasting accuracy is significantly improved by using Student-t noise models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a radial basis function based extension to a recently proposed variational algorithm for approximate inference for diffusion processes. Inference, for state and in particular (hyper-) parameters, in diffusion processes is a challenging and crucial task. We show that the new radial basis function approximation based algorithm converges to the original algorithm and has beneficial characteristics when estimating (hyper-)parameters. We validate our new approach on a nonlinear double well potential dynamical system.