865 resultados para Validation of analytical methods
Resumo:
OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.
Resumo:
BACKGROUND Predicting long-term survival after admission to hospital is helpful for clinical, administrative and research purposes. The Hospital-patient One-year Mortality Risk (HOMR) model was derived and internally validated to predict the risk of death within 1 year after admission. We conducted an external validation of the model in a large multicentre study. METHODS We used administrative data for all nonpsychiatric admissions of adult patients to hospitals in the provinces of Ontario (2003-2010) and Alberta (2011-2012), and to the Brigham and Women's Hospital in Boston (2010-2012) to calculate each patient's HOMR score at admission. The HOMR score is based on a set of parameters that captures patient demographics, health burden and severity of acute illness. We determined patient status (alive or dead) 1 year after admission using population-based registries. RESULTS The 3 validation cohorts (n = 2,862,996 in Ontario, 210 595 in Alberta and 66,683 in Boston) were distinct from each other and from the derivation cohort. The overall risk of death within 1 year after admission was 8.7% (95% confidence interval [CI] 8.7% to 8.8%). The HOMR score was strongly and significantly associated with risk of death in all populations and was highly discriminative, with a C statistic ranging from 0.89 (95% CI 0.87 to 0.91) to 0.92 (95% CI 0.91 to 0.92). Observed and expected outcome risks were similar (median absolute difference in percent dying in 1 yr 0.3%, interquartile range 0.05%-2.5%). INTERPRETATION The HOMR score, calculated using routinely collected administrative data, accurately predicted the risk of death among adult patients within 1 year after admission to hospital for nonpsychiatric indications. Similar performance was seen when the score was used in geographically and temporally diverse populations. The HOMR model can be used for risk adjustment in analyses of health administrative data to predict long-term survival among hospital patients.
Resumo:
BACKGROUND Canine S100 calcium-binding protein A12 (cS100A12) shows promise as biomarker of inflammation in dogs. A previously developed cS100A12-radioimmunoassay (RIA) requires radioactive tracers and is not sensitive enough for fecal cS100A12 concentrations in 79% of tested healthy dogs. An ELISA assay may be more sensitive than RIA and does not require radioactive tracers. OBJECTIVE The purpose of the study was to establish a sandwich ELISA for serum and fecal cS100A12, and to establish reference intervals (RI) for normal healthy canine serum and feces. METHODS Polyclonal rabbit anti-cS100A12 antibodies were generated and tested by Western blotting and immunohistochemistry. A sandwich ELISA was developed and validated, including accuracy and precision, and agreement with cS100A12-RIA. The RI, stability, and biologic variation in fecal cS100A12, and the effect of corticosteroids on serum cS100A12 were evaluated. RESULTS Lower detection limits were 5 μg/L (serum) and 1 ng/g (fecal), respectively. Intra- and inter-assay coefficients of variation were ≤ 4.4% and ≤ 10.9%, respectively. Observed-to-expected ratios for linearity and spiking recovery were 98.2 ± 9.8% (mean ± SD) and 93.0 ± 6.1%, respectively. There was a significant bias between the ELISA and the RIA. The RI was 49-320 μg/L for serum and 2-484 ng/g for fecal cS100A12. Fecal cS100A12 was stable for 7 days at 23, 4, -20, and -80°C; biologic variation was negligible but variation within one fecal sample was significant. Corticosteroid treatment had no clinically significant effect on serum cS100A12 concentrations. CONCLUSIONS The cS100A12-ELISA is a precise and accurate assay for serum and fecal cS100A12 in dogs.
Resumo:
Background/significance. The scarcity of reliable and valid Spanish language instruments for health related research has hindered research with the Hispanic population. Research suggests that fatalistic attitudes are related to poor cancer screening behaviors and may be one reason for low participation of Mexican-Americans in cancer screening. This problem is of major concern because Mexican-Americans constitute the largest Hispanic subgroup in the U.S.^ Purpose. The purposes of this study were: (1) To translate the Powe Fatalism Inventory, (PFI) into Spanish, and culturally adapt the instrument to the Mexican-American culture as found along the U.S.-Mexico border and (2) To test the equivalence between the Spanish translated, culturally adapted version of the PFI and the English version of the PFI to include clarity, content validity, reading level and reliability.^ Design. Descriptive, cross-sectional.^ Methods. The Spanish language translation used a translation model which incorporates a cultural adaptation process. The SPFI was administered to 175 bilingual participants residing in a midsize, U.S-Mexico border city. Data analysis included estimation of Cronbach's alpha, factor analysis, paired samples t-test comparison and multiple regression analysis using SPSS software, as well as measurement of content validity and reading level of the SPFI. ^ Findings. A reliability estimate using Cronbach's alpha coefficient was 0.81 for the SPFI compared to 0.80 for the PFI in this study. Factor Analysis extracted four factors which explained 59% of the variance. Paired t-test comparison revealed no statistically significant differences between the SPFI and PFI total or individual item scores. Content Validity Index was determined to be 1.0. Reading Level was assessed to be less than a 6th grade reading level. The correlation coefficient between the SPFI and PFI was 0.95.^ Conclusions. This study provided strong psychometric evidence that the Spanish translated, culturally adapted SPFI is an equivalent tool to the English version of the PFI in measuring cancer fatalism. This indicates that the two forms of the instrument can be used interchangeably in a single study to accommodate reading and speaking abilities of respondents. ^
Resumo:
Background. This study validated the content of an instrument designed to assess the performance of the medicolegal death investigation system. The instrument was modified from Version 2.0 of the Local Public Health System Performance Assessment Instrument (CDC) and is based on the 10 Essential Public Health Services. ^ Aims. The aims were to employ a cognitive testing process to interview a randomized sample of medicolegal death investigation office leaders, qualitatively describe the results, and revise the instrument accordingly. ^ Methods. A cognitive testing process was used to validate the survey instrument's content in terms of the how well participants could respond to and interpret the questions. Twelve randomly selected medicolegal death investigation chiefs (or equivalent) that represented the seven types of medicolegal death investigation systems and six different state mandates were interviewed by telephone. The respondents also were representative of the educational diversity within medicolegal death investigation leadership. Based on respondent comments, themes were identified that permitted improvement of the instrument toward collecting valid and reliable information when ultimately used in a field survey format. ^ Results. Responses were coded and classified, which permitted the identification of themes related to Comprehension/Interpretation, Retrieval, Estimate/Judgment, and Response. The majority of respondent comments related to Comprehension/Interpretation of the questions. Respondents identified 67 questions and 6 section explanations that merited rephrasing, adding, or deleting examples or words. In addition, five questions were added based on respondent comments. ^ Conclusion. The content of the instrument was validated by cognitive testing method design. The respondents agreed that the instrument would be a useful and relevant tool for assessing system performance. ^
Resumo:
Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation. The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the center of the English Channel makes it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium - in the form of HTO - are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14 493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements. An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs. This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion. Physical and tracer data are available from the SISMER database of IFREMER (www.ifremer.fr/sismer/catal). This tool for validation of models in macro-tidal seas is intended to be an open and evolving resource, which could provide a benchmark for dispersion model validation.
Resumo:
Fish communities are a key element in fluvial ecosystems Their position in the top of the food chain and their sensitivity to a whole range of impacts make them a clear objective for ecosystem conservation and a sound indicator of biological integrity. The UE Water Framework Directive includes fish community composition, abundance and structure as relevant elements for the evaluation os biological condition. Several approaches have been proposed for the evaluation of the condition of fish communities, from the bio-indicator concept to the IBI (Index of biotic integrity) proposals. However, the complexity of fish communities and their ecological responses make this evaluation difficult, and we must avoid both oversimplified and extreme analytical procedures. In this work we present a new proposal to define reference conditions in fish communities, discussing them from an ecological viewpoint. This method is a synthetic approach called SYNTHETIC OPEN METHODOLOGICAL FRAMEWORK (SOMF) that has been applied to the rivers of Navarra. As a result, it is recommended the integration of all the available information from spatial, modelling, historical and expert sources, providing the better approach to fish reference conditions, keeping the highest level of information and meeting the legal requirements of the WFD.
Resumo:
Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.
Resumo:
Brachypodium distachyon (2n = 2x = 10) is a small annual grass species where the existence of three different cytotypes (10, 20 and 30 chromosomes) has long been regarded as a case of autopolyploid series, with x = 5. However, it has been demonstrated that the cytotypes assumed to be polyploids represent two separate Brachypodium species recently named as B. stacei (2n = 2x = 20) and B. hybridum (2n = 4x = 30). The aim of this study was to find a PCR-based alternative approach that could replace standard cytotyping methods (i. e., chromosome counting and flow cytometry) to characterize each of the three Brachypodium species. We have analyzed with four microsatellite (SSR) markers eighty-three Brachypodium distachyon-type lines from varied locations in Spain, including the Balearic and Canary Islands. Within this set of lines, 64, 4 and 15 had 10, 20 and 30 chromosomes, respectively. The surveyed markers produced cytotype-specific SSR profiles. So, a single amplification product was generated in the diploid samples, with non-overlapping allelic ranges between the 2n = 10 and 2n = 20 cytotypes, whereas two bands, one in the size range of each of the diploid cytotypes, were amplified in the 2n = 30 lines. Furthermore, the remarkable size difference obtained with the SSR ALB165 allowed the identification of the Brachypodium species by simple agarose gel electrophoresis.
Resumo:
Purpose: To provide for the basis for collecting strength training data using a rigorously validated injury report form. Methods: A group of specialist designed a questionnaire of 45 item grouped into 4 dimensions. Six stages were used to assess face, content, and criterion validity of the weight training injury report form. A 13 members panel assessed the form for face validity, and an expert panel assessed it for content and criterion validity. Panel members were consulted until consensus was reached. A yardstick developed by an expert panel using Intraclass correlation technique was used to assess the reability of the form. Test-retest reliability was assessed with the intraclass correlation coefficient (ICC).The strength training injury report form was developed, and the face, content, and criterion validity successfully assessed. A six step protocol to create a yardstick was also developed to assist in the validation process. Both inter-rater and intra rater reliability results indicated a 98% agreement. Inter-rater reliability agreement of 98% for three injuries. Results: The Cronbach?s alpha of the questionnaire was 0.944 (pmenor que0.01) and the ICC of the entire questionnaire was 0.894 (pmenor que0.01). Conclusion: The questionnaire gathers together enough psychometric properties to be considered a valid and reliable tool for register injury data in strength training, and providing researchers with a basis for future studies in this area. Key Words: data collection; validation; injury prevention; strength training
Resumo:
Monte-Carlo (MC) methods are a valuable tool for dosimetry in radiotherapy, including Intra-Operative Electron Radiotherapy (IOERT), since effects such as inhomogeneities or beam hardening may be realistically reproduced.
Resumo:
Esta tesis propone una completa formulación termo-mecánica para la simulación no-lineal de mecanismos flexibles basada en métodos libres de malla. El enfoque se basa en tres pilares principales: la formulación de Lagrangiano total para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de forma libres de malla. Los métodos sin malla se caracterizan por la definición de un conjunto de funciones de forma en dominios solapados, junto con una malla de integración de las ecuaciones discretas de balance. Dos tipos de funciones de forma se han seleccionado como representación de las familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadrados Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles, y su ausencia de conectividad predefinida se ha aprovechado para interconectar múltiples dominios de manera automática, permitiendo el uso de mallas de fondo no conformes. Se propone una formulación generalizada de restricciones, juntas y contactos, válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside en que independiza completamente el dominio con respecto de las uniones y acciones externas a cada sólido, permitiendo su definición incluso fuera del contorno. Al mismo tiempo, también se minimiza el número de ecuaciones de restricción necesarias para la definición de uniones realistas. Las diversas validaciones, ejemplos y comparaciones detalladas muestran como el enfoque propuesto es genérico y extensible a un gran número de sistemas. En concreto, las comparaciones con el MEF indican una importante reducción del error para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los métodos libres de malla es mayor que la del MEF cuanto más grosera es la discretización. Finalmente, la formulación se aplica a un problema de diseño real sobre el mantenimiento de estructuras masivas en el interior de un reactor de fusión, demostrando su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para su uso en simulación en tiempo real de sistemas no-lineales. A new complete formulation is proposed for the simulation of nonlinear dynamic of multibody systems with thermo-mechanical behaviour. The approach is founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin discretization, and meshfree shape functions. Meshfree methods are characterized by the definition of a set of shape functions in overlapping domains, and a background grid for integration of the Galerkin discrete equations. Two different types of shape functions have been chosen as representatives of interpolation (Radial Basis Functions), and approximation (Moving Least Squares) families. Their formulation has been adapted to use compatible parameters, and their lack of predefined connectivity is used to interconnect different domains seamlessly, allowing the use of non-conforming meshes. A generalized formulation for constraints, joints, and contacts is proposed, which is valid for rigid and flexible solids, being the later discretized using either finite elements (FEM) or meshfree methods. The greatest advantage of this approach is that makes the domain completely independent of the external links and actions, allowing to even define them outside of the boundary. At the same time, the number of constraint equations needed for defining realistic joints is minimized. Validation, examples, and benchmarks are provided for the proposed formulation, demonstrating that the approach is generic and extensible to further problems. Comparisons with FEM show a much lower error for the same number of nodes, both for mechanical and thermal analyses. The numerical efficiency is also better when coarse discretizations are used. A final demonstration to a real problem for handling massive structures inside of a fusion reactor is presented. It demonstrates that the application of meshfree methods is feasible and can provide an advantage towards the definition of nonlinear real-time simulation models.
Resumo:
Background: To develop and validate an item bank to measure mobility in older people in primary care and to analyse differential item functioning (DIF) and differential bundle functioning (DBF) by sex. Methods: A pool of 48 mobility items was administered by interview to 593 older people attending primary health care practices. The pool contained four domains based on the International Classification of Functioning: changing and maintaining body position, carrying, lifting and pushing, walking and going up and down stairs. Results: The Late Life Mobility item bank consisted of 35 items, and measured with a reliability of 0.90 or more across the full spectrum of mobility, except at the higher end of better functioning. No evidence was found of non-uniform DIF but uniform DIF was observed, mainly for items in the changing and maintaining body position and carrying, lifting and pushing domains. The walking domain did not display DBF, but the other three domains did, principally the carrying, lifting and pushing items. Conclusions: During the design and validation of an item bank to measure mobility in older people, we found that strength (carrying, lifting and pushing) items formed a secondary dimension that produced DBF. More research is needed to determine how best to include strength items in a mobility measure, or whether it would be more appropriate to design separate measures for each construct.
Resumo:
Introduction. To date, no rating scales for detecting apathy in Parkinson’s disease (PD) patients have been validated in Spanish. For this reason, the aim of this study was to validate a Spanish version of Lille apathy rating scale (LARS) in a cohort of PD patients from Spain. Participants and Methods. 130 PD patients and 70 healthy controls were recruited to participate in the study. Apathy was measured using the Spanish version of LARS and the neuropsychiatric inventory (NPI). Reliability (internal consistency, test-retest, and interrater reliability) and validity (construct, content, and criterion validity) were measured. Results. Interrater reliability was 0.93. Cronbach’s α for LARS was 0.81. The test-retest correlation coefficient was 0.97. The correlation between LARS and NPI scores was 0.61. The optimal cutoff point under the ROC curve was , whereas the value derived from healthy controls was . The prevalence of apathy in our population tested by LARS was 42%. Conclusions. The Spanish version of LARS is a reliable and useful tool for diagnosing apathy in PD patients. Total LARS score is influenced by the presence of depression and cognitive impairment. However, both disorders are independent identities with respect to apathy. The satisfactory reliability and validity of the scale make it an appropriate instrument for screening and diagnosing apathy in clinical practice or for research purposes.
Resumo:
Purpose. To validate clinically a new method for estimating the corneal power (P,) using a variable keratometric index (nkadj) in eyes with previous laser refractive surgery. Setting. University of Alicante and Medimar International Hospital (Oftalmar), Alicante, (Spain). Design. Retrospective case series. Methods. This retrospective study comprised 62 eyes of 62 patients that had undergone myopic LASIK surgery. An algorithm for the calculation of 11kadj was used for the estimation of the adjusted keratometric corneal power (Pkadj). This value was compared with the classical keratometric corneal power (Pk), the True Net Power (TNP), and the Gaussian corneal power (PcGauss). Likewise, Pkadj was compared with other previously described methods. Results. Differences between PcGauss and P, values obtained with all methods evaluated were statistically significant (p < 0.01). Differences between Pkadj and PcGauss were in the limit of clinical significance (p < 0.01, loA [ - 0.33,0.60] D). Differences between Pkadj and TNP were not statistically and clinically significant (p = 0.319, loA [- 0.50,0.44] D). Differences between Pkadj and previously described methods were statistically significant (p < 0.01), except with PcHaigisL (p = 0.09, loA [ - 0.37,0.29] D). Conclusion. The use of the adjusted keratometric index (nkadj) is a valid method to estimate the central corneal power in corneas with previous myopic laser refractive surgery, providing results comparable to PcHaigisL.