948 resultados para Urban electrical transportation systems
Resumo:
Usually the top and bottom IGBT devices in an inverter leg are of the same make (i.e. from same manufacturer). At low power level, these two devices even may be contained in the same module. However at high power levels the top and bottom devices are in separate modules. Sometimes, in the event of device failure, device of particular make may be replaced by one of another make, but of same ratings (on account of non-availability of the original make). This paper investigates the effect of such intermixing of two different makes of high power IGBTs in an inverter leg on the switching characteristics. The switching transitions between IGBT and diode of similar make and those of IGBT and diode of dissimilar make are compared experimentally at various DC link voltages and currents. The comparisons are made in terms of, IGBT peak turn-on di/dt, IGBT peak turn-off di/dt, peak diode reverse recovery current (I-rr), peak IGBT voltage overshoot and switching energy losses.
Resumo:
This paper is a study of Multilevel Sinusoidal Pulse Width Modulation (MSPWM) methods; Phase Disposition (PD), Alternate Phase Opposition Disposition (APOD), Phase Opposition Disposition (POD) on a single phase Cascaded H-Bridge Multilevel inverter. Various factors such as amplitude modulation index (Ma), frequency modulation index (M-f), phase angle between carrier and reference modulating wave (phi) have been considered for simulation. Variation in these factors and their effect on inverter performance is evaluated. Factors such as DC bus utilization, output r.m.s voltage, total harmonic distortion (%THD), dominant harmonic order, switching losses are evaluated based on simulation results.
Resumo:
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.
Resumo:
The stability of the underground structure is very important not only from the point of view of the structure itself, but also from the point of view of other structures. Therefore, the evaluation of the process of deterioration can help us very much. In the first part of the paper the ageing of the structures in the scope of their life cycle will be described. The whole process of deterioration is important but limited to certain time intervals and is able to give signals about changes in macro-scale. The second part of the paper is focused on the adaptation of new methods: micro technology of monitoring - such as MEMS (Micro Electrical Mechanical Systems) and wireless technologies for data transfer. It is obvious that such new technologies have to be assessed for the ability to deliver data continuously and for their safety and solidity. At the end of the paper the application of the measurements on the Prague metro's lining is mentioned. © 2007 Taylor & Francis Group.
Resumo:
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.
Resumo:
The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This study presents a measurement-based method for the early detection of power system oscillations, with consideration of mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet-based support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in frequency bands, whereas the SVDD method is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude, or that are resonant, can be alarmed to the system operator, to reduce the risk of system instability. The proposed method is exemplified using measured data from a chosen wind farm site.
Resumo:
The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.
Resumo:
This paper presents a new technique for the detectionof islanding conditions in electrical power systems. This problem isespecially prevalent in systems with significant penetrations of distributedrenewable generation. The proposed technique is based onthe application of principal component analysis (PCA) to data setsof wide-area frequency measurements, recorded by phasor measurementunits. The PCA approach was able to detect islandingaccurately and quickly when compared with conventional RoCoFtechniques, as well as with the frequency difference and change-ofangledifference methods recently proposed in the literature. Thereliability and accuracy of the proposed PCA approach is demonstratedby using a number of test cases, which consider islandingand nonislanding events. The test cases are based on real data,recorded from several phasor measurement units located in theU.K. power system.
Resumo:
A new method is presented for transmission loss allocation based on the separation of transmission loss caused by load and the loss due to circulating currents between generators. The theoretical basis for and derivation of the loss formulae are presented using simple systems. The concept is then extended to a general power system using the Ybus model. Details of the application of the proposed method to a typical power system are presented along with results from the IEEE 30 bus test system. The results from both the small system and the standard IEEE test system demonstrate the validity of the proposed method.
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.
Resumo:
A simple yet efficient harmony search (HS) method with a new pitch adjustment rule (NPAHS) is proposed for dynamic economic dispatch (DED) of electrical power systems, a large-scale non-linear real time optimization problem imposed by a number of complex constraints. The new pitch adjustment rule is based on the perturbation information and the mean value of the harmony memory, which is simple to implement and helps to enhance solution quality and convergence speed. A new constraint handling technique is also developed to effectively handle various constraints in the DED problem, and the violation of ramp rate limits between the first and last scheduling intervals that is often ignored by existing approaches for DED problems is effectively eliminated. To validate the effectiveness, the NPAHS is first tested on 10 popular benchmark functions with 100 dimensions, in comparison with four HS variants and five state-of-the-art evolutionary algorithms. Then, NPAHS is used to solve three 24-h DED systems with 5, 15 and 54 units, which consider the valve point effects, transmission loss, emission and prohibited operating zones. Simulation results on all these systems show the scalability and superiority of the proposed NPAHS on various large scale problems.
Resumo:
This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.