424 resultados para Ubiquitine ligase UBR5


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the core-LPS. O-Antigen ligases are crucial in this pathway for the transfer of undecraprenol-linked sugars to the LPS-core in Gram-negative bacteria. An O-antigen ligase homologue, pglL, was identified in N. meningitidis. PglL mutants showed no change in LPS phenotypes but did show loss of pilin glycosylation, confirming PglL is essential for pilin O-linked glycosylation in N. meningitidis. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of proteins are activated by stress stimuli but none so spectacularly or with the degree of complexity as the tumour suppressor p53 (human p53 gene or protein). Once stabilized, p53 is responsible for the transcriptional activation of a series of proteins involved in cell cycle control, apoptosis and senescence. This protein is present at low levels in resting cells but after exposure to DNA-damaging agents and other stress stimuli it is stabilized and activated by a series of post-translational modifications that free it from MDM2 (mouse double minute 2 but used interchangeably to denote human also), a ubiquination ligase that ubiquitinates it prior to proteasome degradation. The stability of p53 is also influenced by a series of other interacting proteins. In this review, we discuss the post-translational modifications to p53 in response to different stresses and the consequences of these changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Randomisation of DNA using conventional methodology requires an excess of genes to be cloned, since with randomised codons NNN or NNG/T 64 genes or 32 genes must be cloned to encode 20 amino acids respectively. Thus, as the number of randomised codons increases, the number of genes required to encode a full set of proteins increases exponentially. Various methods have been developed that address the problems associated with excess of genes that occurs due to the degeneracy of the genetic code. These range from chemical methodologies to biological methods. These all involve the replacement, insertion or deletion of codon(s) rather than individual nucleotides. The biological methods are however limited to random insertion/deletion or replacement. Recent work by Hughes et al., (2003) has randomised three binding residues of a zinc finger gene. The drawback with this is the fact that consecutive codons cannot undergo saturation mutagenesis. This thesis describes the development of a method of saturation mutagenesis that can be used to randomise any number of consecutive codons in a DNA strand. The method makes use of “MAX” oligonucleotides coding for each of the 20 amino acids that are ligated to a conserved sequence of DNA using T4 DNA ligase. The “MAX” oligonucleotides were synthesised in such a way, with an MlyI restriction site, that restriction of the oligonucleotides occurred after the three nucleotides coding for the amino acids. This use of the MlyI site and the restrict, purify, ligate and amplify method allows the insertion of “MAX” codons at any position in the DNA. This methodology reduces the number of clones that are required to produce a representative library and has been demonstrated to be effective to 7 amino acid positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. © 2013 Dias et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation- based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. Copyright © 2009 RNA Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review: Although cachexia has a major effect on both the morbidity and mortality of cancer patients, information on the mechanisms responsible for this condition is limited. This review summarizes recent data in this area. Recent findings: Cachexia is defined as loss of muscle, with or without fat, frequently associated with anorexia, inflammation and insulin resistance. Loss of adipose mass is due to an increased lipolysis through an increased expression of hormone-sensitive lipase. Adipose tissue does not contribute to the inflammatory response. There is an increased phosphorylation of both protein kinase R (PKR) and eukaryotic initiation factor 2 on the α-subunit in skeletal muscle of cachectic cancer patients, which would lead to muscle atrophy through a depression in protein synthesis and an increase in degradation. Mice lacking the ubiquitin ligase MuRF1 are less susceptible to muscle wasting under amino acid deprivation. Expression of MuRF1 and atrogin-1 is increased by oxidative stress, whereas nitric oxide may protect against muscle atrophy. Levels of interleukin (IL)-6 correlate with cachexia and death due to an increase in tumour burden. Ghrelin analogues and melanocortin receptor antagonists increase food intake and may have a role in the treatment of cachexia. Summary: These findings provide impetus for the development of new therapeutic agents. © 2010 Wolters Kluwer Health

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans le système nerveux central, la dopamine joue un rôle crucial dans de nombreuses fonctions physiologiques telles que : l’apprentissage, le mouvement volontaire, la motivation, la cognition et la production hormonale. Il a été aussi démontré que le système de signalisation dopaminergique est altéré dans plusieurs maladies neurologiques et psychiatriques comme la maladie de Parkinson et la schizophrénie. Des études, effectuées dans le laboratoire du Dr.Daniel Lévesque (laboratoire d’accueil), ont montré que les récepteurs nucléaires Nur77 (NR4A1, NGFI-B) et RXRγ (retinoid X receptors γ) sont impliqués dans la régulation des effets de la dopamine dans le système nerveux central. De plus, ces données suggèrent que le complexe Nur77 et RXR joueraient un rôle crucial dans l’effet des médicaments antipsychotiques et antiparkinsoniens. Toutefois, très peu de médicaments ciblant Nur77 ont été identifiés à ce jour et les médicaments agissant sur RXRγ restent mal caractérisés. En outre, les analyses actuellement disponibles ne peuvent pas résumer la complexité des activités des NRs et génèrent des mesures indirectes des activités des drogues. Afin de mieux comprendre comment est régulée l’interaction Nur77/RXRγ dans ces processus, mon projet a été de mettre au point un essai BRET (Bioluminescence Resonance Energy Transfer) et PCA-BRET (Protein Complementation Assay-BRET) basé sur le recrutement d'un motif mimant un co-activateur fusionné avec la YFP. Nos différents essais ont été validés par courbes dose-réponse en utilisant différents composés RXR . Les EC50 (concentration efficace médiane, qui permet de mesurer l'efficacité d'un composé) obtenues étaient très semblables aux valeurs précédemment rapportées dans la littérature. Nous avons aussi pu identifier un composé le SR11237 (BMS649) qui semble posséder une sélectivité pour le complexe Nur77/RXRγ par rapport aux complexes Nurr1/RXRγ et RXRγ /RXRγ. Nos résultats indiquent que ces essais de BRET peuvent être utilisés pour évaluer la sélectivité de nouveaux composés pour les complexes Nur77/RXRγ, Nurr1/RXRγ et RXRγ /RXRγ. Un autre aspect de mon projet de doctorat a été de mettre en évidence par BRET l’importance de la SUMOylation dans la régulation de l'activité de Nur77 dans sa forme monomèrique, homodimèrique et hétérodimèrique. Nous avons ainsi identifié que Nur77 recrute principalement SUMO2 sur sa lysine 577. Il est intéressant de noté que le recrutement de la SUMO2 à Nur77 est potentialisé en présence de la SUMO E3 Ligase PIASγ. Aussi, la perte de la SUMOylation sur la lysine 577 entraîne l'incapacité de Nur77 de recruter divers motifs de co-activation mais pas pour ses formes homo- et hétérodimèrique. Cependant, la présence de PIASγ ne potentialise pas le recrutement du co-activateur, suggérant que cette SUMO E3 Ligase est seulement impliqué dans le processus de recrutement de la SUMO mais pas dans celui du co-activateur. Nous avons ainsi déterminé une nouvelle modification post-traductionnelle sur Nur77 régulant spécifiquement son activité monomérique Ces projets pourraient donc apporter de nouvelles données cruciales pour l’amélioration du traitement de la maladie de Parkinson ou de la schizophrénie, ainsi que d'obtenir une meilleure compréhension sur les mécanismes permettant la régulation de la fonction de Nur77

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18(-/-) mice. Moreover, primary Rad18(-/-) mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18(-/-) HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18(-/-) mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.