917 resultados para UNIT CELL VARIATIONS
Resumo:
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work
Resumo:
We present the structural, electronic structure and magnetic studies of Ni doped SmFeO3. The X-ray diffraction (XRD) studies confirm the single phase nature of the samples having orthorhombic Pbnm structure and the unit-cell volume is decreasing with the increase of Ni concentration. X-ray absorption spectroscopy (XAS) studies on O K. Fe L-3.2, Ni L-3.2 and Sm M-5.4 edges of SmFe1-xNixO3 (x <= 0.5) samples along with the reference compounds revealed the homo-valence state of Fe and Ni in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and anti-ferromagnetic sub-lattices, which are strongly dependent on the thermo-magnetic state of the system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents results of physical and mechanical tests in polyester (PET) and polypropilene (PP) nonwoven geotextiles that were exposed to weathering conditions (solar radiation, humidity, wind, rain) after some specific periods of exposure (1, 2, 3 and 4 months). ASTM D5970 and Brazilian standards (NBR) recommendation were followed in this research. Results show variations in tensile properties and in the mass per unit area. Variations in the deformations were more significant in the PP geotextile when compared to the PET geotextile.
Resumo:
In this thesis, we investigated the magnonic and photonic structures that exhibit the so-called deterministic disorder. Speci cally, we studied the effects of the quasiperiodicity, associated with an internal structural symmetry, called mirror symmetry, on the spectra of photonics and magnonics multilayer. The quasiperiodicity is introduced when stacked layers following the so-called substitutional sequences. The three sequences used here were the Fibonacci sequence, Thue-Morse and double-period, all with mirror symmetry. Aiming to study the propagation of light waves in multilayer photonic, and spin waves propagation in multilayer magnonic, we use a theoretical model based on transfer matrix treatment. For the propagation of light waves, we present numerical results that show that the quasiperiodicity associated with a mirror symmetry greatly increases the intensity of transmission and the transmission spectra exhibit a pro le self-similar. The return map plotted for this system show that the presence of internal symmetry does not alter the pattern of Fibonacci maps when compared with the case without symmetry. But when comparing the maps of Thue-Morse and double-time sequences with their case without the symmetry mirror, is evident the change in the pro le of the maps. For magnetic multilayers, we work with two di erent systems, multilayer composed of a metamagnetic material and a non-magnetic material, and multilayers composed of two cubic Heisenberg ferromagnets. In the rst case, our calculations are carried out in the magnetostatic regime and calculate the dispersion relation of spin waves for the metamgnetic material considered FeBr2. We show the e ect of mirror symmetry in the spectra of spin waves, and made the analysis of the location of bulk bands and the scaling laws between the full width of the bands allowed and the number of layers of unit cell. Finally, we calculate the transmission spectra of spin waves in quasiperiodic multilayers consisting of Heisenberg ferromagnets. The transmission spectra exhibit self-similar patterns, with regions of scaling well-de ned in frequency and the return maps indicates only dependence of the particular sequence used in the construction of the multilayer
Resumo:
An acidic (pI similar to 4.5) phospholipase A(2) (BthA-I-PLA(2)) was isolated from Bothrops jararacussu snake venom by ion-exchange chromatography on a CM-Sepharose column followed by reverse phase chromatography on an RP-HPLC C-18 column. It is an similar to13.7 kDa single chain Asp49 PLA(2) with approximately 122 amino acid residues, 7 disulfide bridges, and the following N-terminal sequence: 'SLWQFGKMINYVMJGESGVLQYLSYGCYCGLGGQGQPTDATDRCCFVHDCC(51). Crystals of this acidic protein diffracted beyond 2.0 Angstrom resolution. These crystals are monoclinic and have unit cell dimensions of a = 33.9, b = 63.8, c = 49.1 Angstrom, and beta = 104.0degrees. Although not myotoxic, cytotoxic, or lethal, the protein was catalytically 3-4 tithes more active than BthTX-II, a basic D49 myotoxic PLA(2) from the same venom and other Bothrops venoms. Although it showed no toxic activity, it was able to induce time-independent edema, this activity being inhibited by EDTA. In addition, BthA-I-PLA(2) caused a hypotensive response in the rat and inhibited platelet aggregation, Catalytic, antiplatelet and other activities were abolished by chemical modification with 4-bromophenacyl bromide, which is known to covalently bind to His48 of the catalytic site. Antibodies raised against crude B. jararacussu venom recognized this acidic PLA(2), while anti-Asp49-BthTX-II recognized it weakly and anti-Lys49-BthTX-I showed the least cross-reaction. These data confirm that myotoxicity does not necessarily correlate with catalytic activity in native PLA(2) homologues and that either of these two activities may exist alone. BthA-I-PLA(2), in addition to representing a relevant molecular model of catalytic activity, is also a promising hypotensive agent and platelet aggregation inhibitor for further studies. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
BnSP-6 (myotoxin I) is a phospholipase A2 homologue isolated from Bothrops neuwiedi pauloensis venom. Crystals of BnSP-6 were obtained which diffracted X-rays to 2.5 Angstrom resolution using a synchrotron radiation source at room temperature and belong to space group P3(1)21. The unit cell dimensions are a=b=57.7, c=131.1 Angstrom. The structure was solved by molecular replacement using the coordinates of bothropstoxin I from B. jararacussu venom. There are two molecules in the asymmetric unit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The enzymes of the shikimate pathway are potential targets for the development of new therapies because they are essential for bacteria but absent from mammals. The last step in this pathway is performed by chorismate synthase (CS), which catalyzes the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. Optimization of crystallization trials allowed the crystallization of homogeneous recombinant CS from Mycobacterium tuberculosis (MtCS). The crystals of MtCS belong to space group P6(4)22 (or P6(2)22) and diffract to 2.8 Angstrom resolution, with unit-cell parameters a = b = 129.7, c = 156.8 Angstrom. There are two molecules in the asymmetric unit. Molecular-replacement trials were not sucessful. Heavy-atom derivative screening is in progress.
Resumo:
BaP1 is a metalloproteinase isolated from the venom of the Central American snake Bothrops asper (terciopelo). It is a 24 kDa protein consisting of a single chain which includes the metalloproteinase domain only, therefore being classified as a class P-I snake-venom metalloproteinase. BaP1 induces prominent local tissue damage, such as haemorrhage, myonecrosis, blistering, dermonecrosis and oedema. In order to elucidate its structure, BaP1 was crystallized by the hanging-drop vapour-diffusion technique in 0.1 M bicine pH 9.0, 10% PEG 20 000 and 2%(v/v) dioxane. Diffraction data were observed to a resolution of 2.7 Angstrom. Crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 38.22, b = 60.17, c = 86.09 Angstrom.
Resumo:
Bothrombin, a snake-venom serine protease, specifically cleaves fibrinogen, releasing fibrinopeptide A to form non-crosslinked soft clots, aggregates platelets in the presence of exogeneous fibrinogen and activates blood coagulation factor VIII. Bothrombin shares high sequence homology with other snake-venom proteases such as batroxobin (94% identity), but only 30 and 34% identity with human alpha-thrombin and trypsin, respectively. Single crystals of bothrombin have been obtained and X-ray diffraction data have been collected at the Laboratorio Nacional de Luz Sincrotron to a resolution of 2.8 Angstrom. The crystals belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 94.81, b = 115.68, c = 155.97 Angstrom.
Resumo:
Bucain is a three-finger toxin, structurally homologous to snake-venom muscarinic toxins, from the venom of the Malayan krait Bungarus candidus. These proteins have molecular masses of approximately 6000-8000 da and encompass the potent curaremimetic neurotoxins which confer lethality to Elapidae and Hydrophidae venoms. Bucain was crystallized in two crystal forms by the hanging-drop vapour-diffusion technique in 0.1 M sodium citrate pH 5.6, 15% PEG 4000 and 0.15 M ammonium acetate. Form I crystals belong to the monoclinic system space group C2, with unit-cell parameters a = 93.73, b = 49.02, c = 74.09 Angstrom, beta = 111.32degrees, and diffract to a nominal resolution of 1.61 Angstrom. Form II crystals also belong to the space group C2, with unit-cell parameters a = 165.04, b = 49.44, c = 127.60 Angstrom, beta = 125.55degrees, and diffract to a nominal resolution of 2.78 Angstrom. The self-rotation function indicates the presence of four and eight molecules in the crystallographic asymmetric unit of the form I and form II crystals, respectively. Attempts to solve these structures by molecular-replacement methods have not been successful and a heavy-atom derivative search has been initiated.