912 resultados para Two-Fluid Model
Resumo:
An analytical model is presented for the description of nonlinear dust-ion-acoustic waves propagating in an unmagnetized, collisionless, three component plasma composed of electrons, ions and inertial dust grains. The formulation relies on a Lagrangian approach of the plasma fluid model. The modulational stability of the wave amplitude is investigated. Different types of localized envelope electrostatic excitations are shown to exist.
Resumo:
Abundant evidence for the occurrence of modulated envelope plasma wave packets is provided by recent satellite missions. These excitations are characterized by a slowly varying localized envelope structure, embedding the fast carrier wave, which appears to be the result of strong modulation of the wave amplitude. This modulation may be due to parametric interactions between different modes or, simply, to the nonlinear (self-)interaction of the carrier wave. A generic exact theory is presented in this study, for the nonlinear self-modulation of known electrostatic plasma modes, by employing a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The (moderately) nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright(pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness (with respect to the propagation direction), finite temperature and defect (dust) concentration are explicitly considered. Relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Resumo:
The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.
Resumo:
The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P')}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern-Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern-Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of amplitude-modulated electrostatic and electromagnetic
wavepackets in pair plasmas is investigated. A static additional charged background species is considered, accounting for dust defects or for heavy ion
presence in the background. Relying on a two-fluid description, a nonlinear
Schrodinger type evolution equation is obtained and analyzed, in terms of the
slow dynamics of the wave amplitude. Exact envelope excitations are obtained,
modelling envelope pulses or holes, and their characteristics are discussed.
Resumo:
A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics
Resumo:
Dust-acoustic waves are investigated in a three-component plasma consisting of strongly coupled dust particles and Maxwellian electrons and ions. A fluid model approach is used, with the effects of strong coupling being accounted for by an effective electrostatic "pressure" which is a function of the dust number density and the electrostatic potential. Both linear and weakly nonlinear cases are considered by derivation and analysis of the linear dispersion relation and the Korteweg-de Vries equation, respectively. In contrast to previous studies using this model, this paper presents the results arising from an expansion of the dynamical form of the electrostatic pressure, accounting for the variations in its value in the vicinity of the wave. DOI: 10.1103/PhysRevE.86.066404
Resumo:
Space plasmas provide abundant evidence of highly energetic particle population, resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the evolution of plasmas produced during laser-matter interaction are dominated by nonthermal electrons, as confirmed by experimental observation and computer simulations. This phenomenon is efficiently modelled via a kappa-type distribution. We present an overview, from first principles, of the effect of superthermality on the characteristics of electrostatic plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa distribution function to model excess superthermality of the electron distribution. Focusing on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis, we discuss the role of excess superthermality in their propagation dynamics (existence laws, stability profile), geometric characteristics and stability. Numerical simulations are employed to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as well as the modulational stability profile of bright- and dark-type envelope solitons.
Resumo:
The effects of module shape, module design, three dimensional flow field generated by modules, and partition of primary nozzle on the performance of an infinite array linear clustered plug nozzle are discussed. The module shape is a critical element for nozzle performance and the partition of the primary nozzle with round-to square modules causes a vacuum thrust reduction with respect to two-dimensional model. The performance analysis of different module configuration allows weighing separately the role of clustering and the role of module design. In operating conditions characterized by turned off modules the performance loss is larger, but the difference due to the module shape are smaller and mostly due to the module contribution. The performance of the plug nozzle can be improved by module design, which reduces the module exit flow nonuniformity.
Resumo:
The fundamental understanding of the activity in heterogeneous catalysis has long been the major subject in chemistry. This paper shows the development of a two-step model to understand this activity. Using the theory of chemical potential kinetics with Bronsted-Evans-Polanyi relations, the general adsorption energy window is determined from volcano curves, using which the best catalysts can be searched. Significant insights into the reasons for catalytic activity are obtained.
Resumo:
The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Resumo:
The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron-positron-ion plasma is investigated from first principles. Electrons and positrons follow a Fermi-Dirac distribution, while the ions are subject to a quantum (Fermi) pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the wave envelope is shown to be described by a nonlinear Schrödinger equation (NLSE). Criteria for modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather are proposed as candidate functions for rogue waves (freak waves) within the model. The characteristics of the latter and their dependence on relevant parameters (positron concentration and temperature) are investigated. © 2014 IOP Publishing Ltd.
Resumo:
A reliable and valid instrument is needed to screen for depression in palliative patients. The interRAI Depression Rating Scale (DRS) is based on seven items in the interRAI Palliative Care instrument. This study is the first to explore the dimensionality, reliability and validity of the DRS in a palliative population. Palliative home care patients (n = 5,175) residing in Ontario (Canada) were assessed with the interRAI Palliative Care instrument. Exploratory factor analysis and Mokken scale analysis were used to identify candidate conceptual models and evaluate scale homogeneity/performance. Confirmatory factor analysis compared models using standard goodness-of-fit indices. Convergent and divergent validity were investigated by examining polychoric correlations between the DRS and other items. The “known groups” test determined if the DRS meaningfully distinguished among client subgroups. The non-hierarchical two factor model showed acceptable fit with the data, and ordinal alpha coefficients of 0.83 and 0.82 were observed for the two DRS subscales. Omega hierarchical (ωh) was 0.78 for the bifactor model, with the general factor explaining three quarters of the common variance. Despite the multidimensionality evident in the factor analyses, bifactor modelling and the Mokken homogeneity coefficient (0.34) suggest that the DRS is a coherent scale that captures important information on sub-constructs of depression (e.g., somatic symptoms). Higher correlations were seen between the DRS and mood and psychosocial well-being items, and lower correlations with functional status and demographic variables. The DRS distinguished in the expected manner for known risk factors (e.g., social support, pain). The results suggest that the DRS is primarily unidimensional and reliable for use in screening for depression in palliative care patients.