966 resultados para Turbulence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM), were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro è dedicato all'analisi fisica e alla modellizzazione dello strato limite atmosferico in condizioni stabili. L'obiettivo principale è quello di migliorare i modelli di parametrizzazione della turbulenza attualmente utilizzati dai modelli meteorologici a grande scala. Questi modelli di parametrizzazione della turbolenza consistono nell' esprimere gli stress di Reynolds come funzioni dei campi medi (componenti orizzontali della velocità e temperatura potenziale) usando delle chiusure. La maggior parte delle chiusure sono state sviluppate per i casi quasi-neutrali, e la difficoltà è trattare l'effetto della stabilità in modo rigoroso. Studieremo in dettaglio due differenti modelli di chiusura della turbolenza per lo strato limite stabile basati su assunzioni diverse: uno schema TKE-l (Mellor-Yamada,1982), che è usato nel modello di previsione BOLAM (Bologna Limited Area Model), e uno schema sviluppato recentemente da Mauritsen et al. (2007). Le assunzioni delle chiusure dei due schemi sono analizzate con dati sperimentali provenienti dalla torre di Cabauw in Olanda e dal sito CIBA in Spagna. Questi schemi di parametrizzazione della turbolenza sono quindi inseriti all'interno di un modello colonnare dello strato limite atmosferico, per testare le loro predizioni senza influenze esterne. Il confronto tra i differenti schemi è effettuato su un caso ben documentato in letteratura, il "GABLS1". Per confermare la validità delle predizioni, un dataset tridimensionale è creato simulando lo stesso caso GABLS1 con una Large Eddy Simulation. ARPS (Advanced Regional Prediction System) è stato usato per questo scopo. La stratificazione stabile vincola il passo di griglia, poichè la LES deve essere ad una risoluzione abbastanza elevata affinchè le tipiche scale verticali di moto siano correttamente risolte. Il confronto di questo dataset tridimensionale con le predizioni degli schemi turbolenti permettono di proporre un insieme di nuove chiusure atte a migliorare il modello di turbolenza di BOLAM. Il lavoro è stato compiuto all' ISAC-CNR di Bologna e al LEGI di Grenoble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a modelization of the turbulence in the atmospheric boundary layer, under convective condition, is made. For this aim, the equations that describe the atmospheric motion are expressed through Reynolds averages and, then, they need closures. This work consists in modifying the TKE-l closure used in the BOLAM (Bologna Limited Area Model) forecast model. In particular, the single column model extracted from BOLAM is used, which is modified to obtain other three different closure schemes: a non-local term is added to the flux- gradient relations used to close the second order moments present in the evolution equation of the turbulent kinetic energy, so that the flux-gradient relations become more suitable for simulating an unstable boundary layer. Furthermore, a comparison among the results obtained from the single column model, the ones obtained from the three new schemes and the observations provided by the known case in literature ”GABLS2” is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The width of the 21 cm line (HI) emitted by spiral galaxies depends on the physical processes that release energy in the Interstellar Medium (ISM). This quantity is called velocity dispersion (σ) and it is proportional first of all to the thermal kinetic energy of the gas. The accepted theoretical picture predicts that the neutral hydrogen component (HI) exists in the ISM in two stable phases: a cold one (CNM, with σ~0.8 km/s) and a warm one (WNM, with σ~8 km/s). However, this is called into question by the observation that the HI gas has usually larger velocity dispersions. This suggests the presence of turbulence in the ISM, although the energy sources remain unknown. In this thesis we want to shed new light on this topic. We have studied the HI line emission of two nearby galaxies: NGC6946 and M101. For the latter we used new deep observations obtained with the Westerbork radio interferometer. Through a gaussian fitting procedure, we produced dispersion maps of the two galaxies. For both of them, we compared the σ values measured in the spiral arms with those in the interarms. In NGC6946 we found that, in both arms and interarms, σ grows with the column density, while we obtained the opposite for M 101. Using a statistical analysis we did not find a significant difference between arm and interarm dispersion distributions. Producing star formation rate density maps (SFRD) of the galaxies, we studied their global and local relations with the HI kinetic energy, as inferred from the measured dispersions. For NGC6946 we obtained a good log-log correlation, in agreement with a simple model of supernova feedback driven turbulence. This shows that in this galaxy turbulent motions are mainly induced by the stellar activity. For M 101 we did not find an analogous correlation, since the gas kinetic energy appears constant with the SFRD. We think that this may indicate that in this galaxy turbulence is driven also by accretion of extragalactic material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Reynolds-Stress Turbulence Model has been incorporated with success into the KIVA code, a computational fluid dynamics hydrocode for three-dimensional simulation of fluid flow in engines. The newly implemented Reynolds-stress turbulence model greatly improves the robustness of KIVA, which in its original version has only eddy-viscosity turbulence models. Validation of the Reynolds-stress turbulence model is accomplished by conducting pipe-flow and channel-flow simulations, and comparing the computed results with experimental and direct numerical simulation data. Flows in engines of various geometry and operating conditions are calculated using the model, to study the complex flow fields as well as confirm the model’s validity. Results show that the Reynolds-stress turbulence model is able to resolve flow details such as swirl and recirculation bubbles. The model is proven to be an appropriate choice for engine simulations, with consistency and robustness, while requiring relatively low computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.