932 resultados para Turbine, expanders, organic, Rankine, cycles, ORC, Energy, systems, computational, model
Resumo:
This paper investigates the use of time-frequency techniques to assist in the estimation of power system modes which are resolvable by a Digital Fourier Transform (DFT). The limitations of linear estimation techniques in the presence of large disturbances which excite system non-linearities, particularly the swing equation non-linearity are shown. Where a nonlinearity manifests itself as time varying modal frequencies the Wigner-Ville Distribution (WVD) is used to describe the variation in modal frequencies and construct a window over which standard linear estimation techniques can be used. The error obtained even in the presence of multiple resolvable modes is better than 2%.
Resumo:
IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
Resumo:
IEC 61850 Process Bus technology has the potential to improve cost, performance and reliability of substation design. Substantial costs associated with copper wiring (designing, documentation, construction, commissioning and troubleshooting) can be reduced with the application of digital Process Bus technology, especially those based upon international standards. An IEC 61850-9-2 based sampled value Process Bus is an enabling technology for the application of Non-Conventional Instrument Transformers (NCIT). Retaining the output of the NCIT in its native digital form, rather than conversion to an analogue output, allows for improved transient performance, dynamic range, safety, reliability and reduced cost. In this paper we report on a pilot installation using NCITs communicating across a switched Ethernet network using the UCAIug Implementation Guideline for IEC 61850-9-2 (9-2 Light Edition or 9-2LE). This system was commissioned in a 275 kV Line Reactor bay at Powerlink Queensland’s Braemar substation in 2009, with sampled value protection IEDs 'shadowing' the existing protection system. The results of commissioning tests and twelve months of service experience using a Fibre Optic Current Transformer (FOCT) from Smart Digital Optics (SDO) are presented, including the response of the system to fault conditions. A number of remaining issues to be resolved to enable wide-scale deployment of NCITs and IEC 61850-9-2 Process Bus technology are also discussed.
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.
Resumo:
Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.
Resumo:
The heterogeneous photocatalytic oxidation process offers a versatile promise in the detoxification and disinfection of wastewater containing hazardous organic compounds such as pesticides and phenolic compounds in storm and wastewater effluent. This process has gained wide attention due to its effectiveness in degrading and mineralizing the organic compounds into harmless and often useful components. To develop an efficient photocatalytic process, titanium dioxide has been actively studied in recent years due to its excellent performance as a photocatalyst under UV light irradiation. This paper aims at critically evaluating and highlighting the recent developments of the heterogeneous photocatalytic systems with a special focus on storm and wastewater treatment applications.
Resumo:
Circuit breaker restrikes are unwanted occurrence, which can ultimately lead to breaker. Before 2008, there was little evidence in the literature of monitoring techniques based on restrike measurement and interpretation produced during switching of capacitor banks and shunt reactor banks. In 2008 a non-intrusive radiometric restrike measurement method, as well a restrike hardware detection algorithm was developed. The limitations of the radiometric measurement method are a band limited frequency response as well as limitations in amplitude determination. Current detection methods and algorithms required the use of wide bandwidth current transformers and voltage dividers. A novel non-intrusive restrike diagnostic algorithm using ATP (Alternative Transient Program) and wavelet transforms is proposed. Wavelet transforms are the most common use in signal processing, which is divided into two tests, i.e. restrike detection and energy level based on deteriorated waveforms in different types of restrike. A ‘db5’ wavelet was selected in the tests as it gave a 97% correct diagnostic rate evaluated using a database of diagnostic signatures. This was also tested using restrike waveforms simulated under different network parameters which gave a 92% correct diagnostic responses. The diagnostic technique and methodology developed in this research can be applied to any power monitoring system with slight modification for restrike detection.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
The CIGRE WGs A3.20 and A3.24 identify the requirements of simulation tools to predict various stresses during the development and operational phases of medium voltage vacuum circuit breaker (VCB) testing. This paper reviews the modelling methodology [13], VCB models and tools to identify future research. It will include the application of the VCB model for the impending failure of a VCB using electro-magnetic-transient-program with diagnostic and prognostic algorithm development. The methodology developed for a VCB degradation model is to modify the dielectric equation to cover a restriking period of more than 1 millimetre.
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
Transmission smart grids will use a digital platform for the automation of high voltage substations. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. A time synchronisation system is required for a sampled value process bus, however the details are not defined in IEC 61850-9-2. PTPv2 provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. The suitability of PTPv2 to synchronise sampling in a digital process bus is evaluated, with preliminary results indicating that steady state performance of low cost clocks is an acceptable ±300 ns, but that corrections issued by grandmaster clocks can introduce significant transients. Extremely stable grandmaster oscillators are required to ensure any corrections are sufficiently small that time synchronising performance is not degraded.