950 resultados para Tunable vibrations absorber
Resumo:
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending, the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length. Based on Rayleigh's quotient, an iterative strategy is developed to find the approximated torsional stiffness coefficients, which allows the reconciliation between the theoretical model results and the experimental ones, obtained through impact tests. The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh's quotient but also on the mode shapes, considering the shape functions defined in branches. Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.
Resumo:
In this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field, however other applications are also foreseen.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
Tunable wavelength division multiplexing converters based on amorphous SiC multilayer photonic active filters are analyzed. The configuration includes two stacked p-i-n structures (p(a-SiC:H)-i'(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts. The manipulation of the magnitude is achieved through appropriated front and back backgrounds. Transfer function characteristics are studied both theoretically and experimentally. An algorithm to decode the multiplex signal is established. An optoelectronic model supports the optoelectronic logic architecture. Results show that the light-activated device combines the demultiplexing operation with the simultaneous photodetection and self-amplification of an optical signal. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long-pass band filter or as a band-stop filter. A two-stage active circuit is presented and gives insight into the physics of the device.
Resumo:
One of the most effective ways of controlling vibrations in plate or beam structures is by means of constrained viscoelastic damping treatments. Contrary to the unconstrained configuration, the design of constrained and integrated layer damping treatments is multifaceted because the thickness of the viscoelastic layer acts distinctly on the two main counterparts of the strain energy the volume of viscoelastic material and the shear strain field. In this work, a parametric study is performed exploring the effect that the design parameters, namely the thickness/length ratio, constraining layer thickness, material modulus, natural mode and boundary conditions have on these two counterparts and subsequently, on the treatment efficiency. This paper presents five parametric studies, namely, the thickness/length ratio, the constraining layer thickness, material properties, natural mode and boundary conditions. The results obtained evidence an interesting effect when dealing with very thin viscoelastic layers that contradicts the standard treatment efficiency vs. layer thickness relation; hence, the potential optimisation of constrained and integrated viscoelastic treatments through the use of properly designed thin multilayer configurations is justified. This work presents a dimensionless analysis and provides useful general guidelines for the efficient design of constrained and integrated damping treatments based on single or multi-layer configurations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Industrial rotating machines may be exposed to severe dynamic excitations due to resonant working regimes. Dealing with the bending vibration, problem of a machine rotor, the shaft - and attached discs - can be simply modelled using the Bernoulli-Euler beam theory, as a continuous beam subjected to a specific set of boundary conditions. In this study, the authors recall Rayleigh's method to propose an iterative strategy, which allows for the determination of natural frequencies and mode shapes of continuous beams taking into account the effect of attached concentrated masses and rotational inertias, including different stiffness coefficients at the right and the left end sides. The algorithm starts with the exact solutions from Bernoulli-Euler's beam theory, which are then updated through Rayleigh's quotient parameters. Several loading cases are examined in comparison with the experimental data and examples are presented to illustrate the validity of the model and the accuracy of the obtained values.
Resumo:
This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.
Resumo:
The application of a-SiC:H/a-Si:H pinpin photodiodes for optoelectronic applications as a WDM demultiplexer device has been demonstrated useful in optical communications that use the WDM technique to encode multiple signals in the visible light range. This is required in short range optical communication applications, where for costs reasons the link is provided by Plastic Optical Fibers. Characterization of these devices has shown the presence of large photocapacitive effects. By superimposing background illumination to the pulsed channel the device behaves as a filter, producing signal attenuation, or as an amplifier, producing signal gain, depending on the channel/background wavelength combination. We present here results, obtained by numerical simulations, about the internal electric configuration of a-SiC:H/a-Si:H pinpin photodiode. These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photo-capacitance due to the accumulation of space charge localized at the bottom diode that, according to the Shockley-Read-Hall model, it is mainly due to defect trapping. Experimental result about measurement of the photodiode capacitance under different conditions of illumination and applied bias will be also presented. The combination of these analyses permits the description of a wavelength controlled photo-capacitance that combined with the series and parallel resistance of the diodes may result in the explicit definition of cut off frequencies for frequency capacitive filters activated by the light background or an oscillatory resonance of photogenerated carriers between the two diodes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present results on the use of a semiconductor heterostructure based on a-SiC:H as a wavelength-division demultiplexer for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field however other applications are foreseen. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Este trabalho apresenta o estudo das leis de propagação das velocidades de vibração resultantes do uso de explosivo em diferentes maciços. Foram efectuados estudos para três tipos de maciços diferentes, granito, quartzito e calcário. Efectuaram-se campanhas de monitorização e registo dos dados em cada uma das situações. Caracterizando e utilizando duas leis de propagação de velocidades no maciço, a de Johnson e Langefors, calculou-se as suas variáveis por método estatístico de regressões lineares múltiplas. Com a obtenção das variáveis fizeram-se estudos de previsão dos valores de vibração a obter utilizando a carga explosiva aplicada nos desmontes. Através dos valores de vibração obtidos em cada pega de fogo para cada tipo de maciço comparou-se quais das duas leis apresentam o valor de velocidade de vibração menor desviado do real. Conforme ficou verificado neste estudo, a equação de Langefors garante uma mais-valia da sua aplicação na previsão das velocidades de vibração pois joga favoravelmente a nível da segurança assim como apresenta um menor desvio face à equação de Johnson quando comparada com o valor real de vibração obtido. Com isto o método de utilização de regressões lineares múltiplas como cálculo dos efeitos vibratórios é extremamente vantajoso a nível de prevenção de danos e cálculo de velocidades de vibração inferiores ao imposto pela Norma.
Resumo:
Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.