885 resultados para Transtornos do Metabolismo de Glucose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of combined long-chain triglyceride infusion (Intralipid 20%) with graded doses of insulin/glucose on energy expenditure was examined in 17 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Intralipid was infused for 90 min at a constant rate of 0.23 g/min; plasma free fatty acids increased from base-line values of 380 +/- 8 mumol/l to steady state levels of 650 +/- 12 mumol/l. After 90 min the Intralipid was continued and insulin was infused at three rates (0.5, 2, and 4 mU/kg . min) to achieve steady state hyperinsulinemic plateaus of 63 +/- 4, 167 +/- 10, and 410 +/- 15 microU/ml. Plasma glucose concentration was maintained constant at basal euglycemic levels (insulin clamp technique) by infusing glucose at 0.24, 0.48, and 0.59 g/min, respectively. Glucose storage during the insulin clamp (ie, glucose uptake minus glucose oxidation) was 0.13, 0.33, and 0.40 g/min for each group and exogenous lipid storage was 0.17, 0.18, and 0.19 g/min, respectively. The net increment in energy expenditure was 0.15, 0.24, and 0.26 kcal/min, respectively, which represents 8.5% of the energy content of the total amount of glucose and lipid stored. The experimentally determined value (approximately 9%) for the cost of storing both glucose and lipid was found to be significantly greater than predicted by stoichiometric calculations. However, the experimental value for the combined infusion was less than that observed for glucose storage alone (12%). This finding provides support for the use of combined glucose/fat infusions in parenteral nutrition as it is used more economically than when glucose is infused alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously reported that glucose can be released from GLUT2-null hepatocytes through a membrane traffic-based pathway issued from the endoplasmic reticulum. Here, we further characterized this glucose release mechanism using biosynthetic labeling protocols. In continuous pulse-labeling experiments, we determined that glucose secretion proceeded linearly and with the same kinetics in control and GLUT2-null hepatocytes. In GLUT2-deficient hepatocytes, however, a fraction of newly synthesized glucose accumulated intracellularly. The linear accumulation of glucose in the medium was inhibited in mutant, but not in control, hepatocytes by progesterone and low temperature, as previously reported, but, importantly, also by microtubule disruption. The intracellular pool of glucose was shown to be present in the cytosol, and, in pulse-chase experiments, it was shown to be released at a relatively slow rate. Release was not inhibited by S-4048 (an inhibitor of glucose-6-phosphate translocase), cytochalasin B, or progesterone. It was inhibited by phloretin, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, and low temperature. We conclude that the major release pathway segregates glucose away from the cytosol by use of a membrane traffic-based, microtubule-dependent mechanism and that the release of the cytosolic pool of newly synthesized glucose, through an as yet unidentified plasma membrane transport system, cannot account for the bulk of glucose release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.