731 resultados para Torsion pendulum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出了一种基于惯性摆结构的波浪能吸收转换方法,并对采用此结构构成的水中载体所受到的波浪力及水动力进行了理论分析,建立了实验模型,对其进行了运动学、动力学仿真实验,仿真结果证明了方案的可行性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

随着陆地战略资源日益短缺以及经济的全球化进展,海洋资源的开发利用已成为沿海各国的重要发展战略之一,也成为地球资源保护与开发的关注热点。 海洋资源开发和利用能力对于一个国家的科研、经济实力具有重大的影响及意义。由于海洋资源开发利用和地球环境监测的迫切需求,促进了水下机器人、水下潜器等无人水中移动载体技术的发展。能源供给技术是水中移动载体系统的关键技术,能源技术对海洋人工系统的生存、作业、自主能力提升具有重要意义。目前海洋移动人工系统主要依赖自携带能源形式,针对水中移动载体的能量自补给技术研究还处于探索阶段。 地球表面有70%的面积被海水所覆盖,海水中蕴藏巨大的波浪能。具有环保、再生特色的波浪能开发利用技术长期以来一直受到国内外科研人员的关注。随着海洋战略地位的提升,海洋自主人工系统已成为海洋科学技术的重点发展内容。利用波浪能为海洋人工移动载体进行能量补给,是对于海洋波浪能利用的一种新的方法和思路。这对于提高海洋人工系统的自主生存、续航能力,提高人类在海洋资源与环境的探测、开发利用等方面的技术能力无疑具有重大意义。因而研究面向海洋人工系统的波浪能利用机理和系统实现技术无疑具有广泛的应用前景。 本文针对海洋人工移动载体自主能量获取利用这一重大科学技术需求,依托中国科学院基地创新基金项目“基于惯性摆原理的无源系统研究”,探索基于惯性摆机理的移动载体波浪能自主获取的机理,研究相关设计理论和技术方法。 由于目前尚无基于惯性摆机理的海洋移动载体能量自补给技术的相关研究成果。因而本论文的研究主要从理论分析和实验方法两个方面开展。重点分析了惯性摆的外激励能量获取机理,基于惯性摆的波浪机械能获取理论的可行性;开展了惯性摆载体的水动力学建模,原理样机的仿真,频域下的能量建模和优化,非线性波浪条件模拟,惯性摆载体的能量获取结构优化等研究工作。主要研究工作如下: 1.针对基于惯性摆机理的移动载体随机波能获取研究方案,分析了相关单摆及惯性摆机械能量转换机理,采用动量及动量矩定理,构建了惯性摆载体的六自由度运动学和动力学方程。 2.进行了相关水动力系数获取方法研究,获得了水动力系数数学描述。同时,采用虚拟样机方法进行惯性摆载体能量获取的研究,证明了基于惯性摆的波能自主获取方法的可行性及有效性。 3.针对虚拟样机方法建模的复杂性及容易产生错误等问题,进行了基于BP神经网络方法的惯性摆能量吸收效率的建模研究。并研究了基于该模型的不同波向角及波浪频率、载体外形尺寸、质量等的虚拟样机的波浪能吸收效率问题,为载体机构的改进及设计提供了较好的理论模型和基础。 4.开展了频域下惯性摆能量吸收效率研究。研究了基于频域的单惯性摆载体的动力学建模方法以及载体结构优化方法,提出采用多种群遗传算法进行载体结构的优化设计方法。通过仿真实验证明了相关算法的有效性,为系统的优化设计研究提供了理论基础。 5.以能量吸收效率最大为目标,进行了多种惯性摆形式的能量获取最大化分析研究,提出了包括单摆在内的多种可行的形式,给出了对比研究结果,可根据不同的提取形式而确定采用的惯性摆的形式。 6.采用PM谱对非线性波浪进行了模拟,研究了单惯性摆结构在非线性波浪力下的能量获取情况,仿真结果表明,在非线性条件下获取的惯性摆能量要更多,而其他波向角、频率等优化条件均与线性条件下的研究结果相同。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文在Bruker AM-400 NMR谱仪上,在不同温度下研究了线形脑啡肽(N-Tyr~1-Gly~2-Gly~3-Phe~4-Leu~5)在DMSO中的NMR溶液构象。由NMR测试结果,得到了NH化学位移温度梯度系数、扭转角φ、χ'约束和~1H-~1H NOE距离约束,用目标函数法计算了脑啡肽的溶液构象,分析了优势边链构象。研究结果指明了多肽骨架的柔变性且处于构象平衡中。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

结合生产应用实际,根据扭杆在实际应用中的情况,利用扭床进行模拟,从而测试扭杆的机械特性及相关的各项指标,为扭杆生产提供可靠的质量保证。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

null Sponsorship: Financial support is acknowledged from the University of Wales Aberystwyth Senate Fund, the Ulysses France-Ireland Exchange Scheme and EPSRC (EP/D014956/1, EP/D048397/1, EP/D071127/1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of social work case files as an important research resource is being threatened by the increasing regulation of both the research process and access to personal identifiable information. While these developments can be seen as a reaction to specific incidents of inappropriate research and the misuse of personal information, it is argued that the pendulum has swung too far the other way, and in seeking to protect the rights of vulnerable individuals, the lives of these same individuals may go unstudied with the consequence that they receive less appropriate services. Drawing upon the current research of the authors, this article explores the difficulties encountered in gaining access to social work case files for research purposes without the explicit consent of service users and highlights the uncertainty surrounding this issue. Suggestions are made for improvements in the situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let X be a connected, noetherian scheme and A{script} be a sheaf of Azumaya algebras on X, which is a locally free O{script}-module of rank a. We show that the kernel and cokernel of K(X) ? K(A{script}) are torsion groups with exponent a for some m and any i = 0, when X is regular or X is of dimension d with an ample sheaf (in this case m = d + 1). As a consequence, K(X, Z/m) ? K(A{script}, Z/m), for any m relatively prime to a. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated how damage changes the modal parameters of a real bridge by means of a field experiment which was conducted on a real steel truss bridge consecutively subjected to four artificial damage scenarios. In the experiment, both the forced and free vibrations of the bridge were recorded, the former for identifying higher modes available exclusively and the latter for lower modes with higher resolution. Results show that modal parameters are little affected by damage causing low stress redistribution. Modal frequencies decrease as damage causing high stress redistribution is applied; such a change can be observed if the damage is at the non-nodal point of the corresponding mode shape. Mode shapes are distorted due to asymmetric damage; they show an amplification in the damaged side as damage is applied at the non-nodal point. Torsion modes become more dominant as damage is applied either asymmetrically or on an element against large design loads. © 2013 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A incorporação de materiais absorsores de energia (AE) em sistemas de protecção é uma clara possibilidade de melhoraria do seu desempenho, devido à elevada relação entre a sua resistência e o seu peso, e a excelente capacidade para absorverem energia quando solicitados dinamicamente. As propriedades mecânicas da cortiça (e.g. a baixa densidade e a elevada rigidez e resistência específicas) sugerem que este material — assim como os seus derivados — podem apresentar propriedades excelentes quando aplicados como núcleos em sistemas AE do tipo estrutura sanduíche. Esta dissertação engloba trabalho experimental e numérico. O primeiro conjunto de testes experimentais consistiu na caracterização experimental dinâmica (ondas de choque de explosivos) do comportamento de dois micra aglomerados de cortiça (MAC), NL20 e TB40. Um pendulo balístico de 4 cabos foi usado para a medição do impulso transmitido a uma amostra de MAC impactada por uma onda de choque com origem na detonação de um explosivo energético. Foi registado o movimento do pêndulo e os valores de força resultantes. Um modelo numérico do problema recorrendo ao método dos elementos finitos (MEF) foi também desenvolvido, apresentando uma elevada correlação com a análise experimental, permitindo assim o desenvolvimento de um modelo constitutivo adequado à modelação do comportamento dinâmico dos MAC neste tipo de solicitações. Na segunda fase de testes experimentais, os MAC testados anteriormente são incorporados como núcleos em estruturas sanduíche com faces de alumínio (liga 5754-H22). Foram medidos os valores de defleção e o impulso transmitido ao pêndulo através do movimento oscilatório. São determinados os efeitos da densidade e da espessura dos núcleos na resposta estrutural do sistema. Também neste caso foi desenvolvido um modelo recorrendo ao MEF e posteriormente validado com resultados experimentais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.