922 resultados para Tomografía computada volumétrica Cone-Beam
Resumo:
A umidade volumétrica do solo possui alta variabilidade espacial e temporal devido à influência de vários fatores ambientais e de uso do solo. Desse modo, seu entendimento assume papel fundamental na modelagem dos processos que envolvem o escoamento superficial, a erosão do solo e o transporte de sedimentos. Nesse contexto, objetivou-se neste estudo avaliar o padrão espacial e temporal da umidade volumétrica na camada superficial do solo, nas diferentes estações do ano, em uma bacia hidrográfica experimental, com predominância de latossolos, localizada na região Sul de Minas Gerais. Para isso, utilizou-se o conceito de estabilidade temporal e escalonamento de semivariogramas, o qual possibilitou a comparação da estrutura espacial dos modelos de semivariogramas ajustados. Foi possível detectar forte dependência espacial da umidade do solo na bacia hidrográfica, com grau de dependência sempre acima de 80 %, e os semivariogramas escalonados mostraram semelhanças no padrão espacial no verão e no outono e diferenças em relação ao inverno e à primavera. Dessa forma, constatou-se que houve diferença no padrão espacial da umidade do solo ao longo do ano, contudo maior homogeneidade no período chuvoso (verão). Ocorreu variação no padrão temporal de umidade do solo de acordo com as estações do ano, sendo verificada tendência nos dados de inverno e primavera, demonstrada pelo teste de Spearman. Devido às diferenças verificadas no padrão espaçotemporal da umidade do solo ao longo das estações do ano, quatro pontos distintos foram identificados, um em cada estação, para implantação de monitoramento permanente desse atributo do solo na bacia hidrográfica.
Resumo:
Purpose:We previously observed that anti- and pro-apoptotic genes of the Bcl-2 family were differentially expressed during the development of LCA in the Rpe65-/- mouse model (Cottet et al. 2006). Moreover, we reported that activation and translocation of pro-apoptotic Bax to the mitochondria was associated with apoptosis of rod photoreceptors as the disease progressed (Cottet et al. 2008). In this study we challenged whether disruption of the pro-apoptotic pro-apoptotic Bax protein is sufficient to protect photoreceptor cells against apoptosis. Methods:Apoptosis of photoreceptor cells was addressed by TUNEL assay on flatmounted retinas. Counting of the rod nuclei within the ONL was performed following hematoxylin/eosin histological staining of retina sections. Expression level and localization of photoreceptor gene markers were assessed by quantitative PCR and immunohistological analyses. Results:While expression of rod photoreceptor genes was decreased in Rpe65-deficient retina, expression level remained unchanged in Rpe65-/- / Bax-/- mice. Moreover, OS dysorganization and shortening as well as decrease in ONL thickness observed in diseased retina were prevented in mice lacking functional Bax protein. TUNEL assay confirmed that Bax-dependent rod photoreceptor apoptosis was abolished in Rpe65-/- / Bax-/- mice. However, early and fast degeneration of cone cells was not prevented in Rpe65-/- / Bax-/- mice, indicating that Bax-induced apoptotic pathway was not involved in the degenerating process of cones in Rpe65-deficient retina. Conclusions:Altogether, these data show for the first time that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in LCA disease. While pro-apoptotic Bax is essential to trigger rod photoreceptor apoptosis, early degeneration of cones is not dependent on Bax-mediated apoptotic pathway in Rpe65-deficientmice.
Resumo:
One-hundred patients treated with curative radiotherapy (RT) ± chemotherapy (CT) for an anal canal carcinoma (T1-4N0-3M0) were retrospectively analyzed. Five- and 10-year local control (LC) rates were 73% and 67%, respectively. Acute and late G3-G4 toxicity rates were 32% and 12%, respectively. Two patients underwent a colostomy for a G4 anal toxicity. This study confirms the outcomes of RT ± CT in the treatment of anal canal cancer. Concomitant CT and LC statistically influenced Overall Survival and Colostomy-Free Survival. CT also statistically reduced the risk of nodal relapse. High rates of acute skin toxicity impose tailored volumes and techniques of irradiation.
Resumo:
Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.
Resumo:
Scattering characteristics of multilayer fluoride coatings for 193 nm deposited by ion beam sputtering and the related interfacial roughnesses are investigated. Quarter- and half-wave stacks of MgF2 and LaF3 with increasing thickness are deposited onto CaF2 and fused silica and are systematically characterized. Roughness measurements carried out by atomic force microscopy reveal the evolution of the power spectral densities of the interfaces with coating thickness. Backward-scattering measurements are presented, and the results are compared with theoretical predictions that use different models for the statistical correlation of interfacial roughnesses.
Resumo:
A method for characterizing the microroughness of samples in optical coating technology is developed. Measurements over different spatial-frequency ranges are composed into a single power spectral density (PSD) covering a large bandwidth. This is followed by the extraction of characteristic parameters through fitting of the PSD to a suitable combination of theoretical models. The method allows us to combine microroughness measurements performed with different techniques, and the fitting procedure can be adapted to any behavior of a combined PSD. The method has been applied to a set of ion-beam-sputtered fluoride vacuum-UV coatings with increasing number of alternative low- and high-index layers. Conclusions about roughness development and microstructural growth are drawn.
Resumo:
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to ~1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.
Resumo:
In this paper, a remote O2 ion source is used for the formation of nano-oxide layers. The oxidation efficiency was measured in CoFe-oxide films, and a decrease of the oxide layer with the pan angle and the oxidation pressure is observed. For the same oxidation pressure, the oxidation efficiency depends on the O2 content in the Ar-O2 plasma. These results were applied in optimizing the fabrication of Al2O3 barrier for tunnel junctions. This method was also used to fabricate junctions with Fe-oxide layers inserted at the Al2O3-CoFe interface. TEM and magnetization data indicate that after anneal at 385°C, a homogeneous ferromagnetic Fe-oxide layer (Fe3O4?) is formed.
Resumo:
Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
Purpose: To report the clinical and genetic study of a family with Leber congenital amaurosis (LCA). Methods: We studied a consanguineous family from Yemen in which three individuals were affected with LCA. Genomic DNA was prepared from venous leukocytes. Linkage analysis of all family members using polymorphic markers flanking the known LCA genes was performed, followed by direct sequencing of all the exons and intron-exon junctions of the RPE65 gene. Results: The three affected were 5, 8 and 12 years old. Severe visual impairment and night blindness were noticed during infancy. Nystagmus was not a feature. Photophobia was only observed in the 8-year-old patient. The 5-year old youngest affected had a bilateral hyperopia of +3.50 and a visual acuity of 1/60. The oldest two had mild myopia and visual acuity limited to hand movements RE and counting fingers LE for the oldest and of 5/60 OD, 6/60 OS for the other. On fundus examination, they harbored common clinical features such as disc pallor, attenuated vessels, white flecks in the retina mid-periphery and bull's eye maculopathy. Electroretinograms of the oldest child were completely extinguished while residual scotopic responses with abolished photopic and flicker responses were observed in the two youngest. Sequencing identified a novel missense mutation, IVS2-3C>G, in the second RPE65 intron. The mutation was not detected in 80 ethnically matched normal individuals. Conclusion: We have identified a novel LCA-related homozygous RPE65 mutation associated with a severe clinical presentation including an early and severe cone dysfunction. This is in contrast with the presentation associated with other RPE65 mutations predominantly causing a rod-cone dystrophy with residual cone function. The identified mutation potentially affects splicing of the third exon and could result in a loss of function. Definite functional consequences of this change still need to be characterized.
Resumo:
Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime importance. Using the Rpe65(R91W/R91W) mouse, which carries a mutation in the Rpe65 gene leading to progressive photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral vector driving expression of RPE65 in the Rpe65(R91W/R91W) mice. Surprisingly, when applied to adult mice (1 month) this treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the Rpe65(R91W/R91W) mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic window compared to the Rpe65(-/-) mice, implying that patients suffering from missense mutations might also benefit from a prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease can be rehabilitated even though they are severely affected.
Resumo:
PURPOSE: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. METHODS AND MATERIALS: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3D statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. RESULTS: Cross-validation revealed a dice similarity of 95% ± 2% for the sclera and cornea and 91% ± 2% for the lens. Overall, mean segmentation error was found to be 0.3 ± 0.1 mm. Average segmentation time was 14 ± 2 s on a standard personal computer. CONCLUSIONS: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.