999 resultados para Tissue implantation
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Física)
Resumo:
Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.
Resumo:
"Tissue engineering: part A", vol. 21, suppl. 1 (2015)
Resumo:
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5 10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
prova tipográfica / uncorrected proof
Resumo:
Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
PURPOSE: The authors analyzed the 30-day and 6-month outcomes of 1,126 consecutive patients who underwent coronary stent implantation in 1996 and 1997. METHODS: The 30-day results and 6-month angiographic follow-up were analyzed in patients treated with coronary stents in 1996 and 1997. All patients underwent coronary stenting with high-pressure implantation (>12 atm) and antiplatelet drug regimen (aspirin plus ticlopidine). RESULTS: During the study period, 1,390 coronary stents were implanted in 1,200 vessels of 1,126 patients; 477 patients were treated in the year 1996 and 649 in 1997. The number of percutaneous procedures performed using stents increased significantly in 1997 compared to 1996 (64 % vs 48%, p=0.0001). The 30-day results were similar in both years; the success and stent thrombosis rates were equal (97% and 0.8%, respectively). The occurrence of new Q wave MI (1.3% vs 1.1%, 1996 vs 1997, p=NS), emergency coronary bypass surgery (1% vs 0.6%, 1996 vs 1997, p=NS) and 30-day death rates (0.2% vs 0.5%, 1996 vs 1997, p=NS) were similar. The 6-month restenosis rate was 25% in 1996 and 27% in 1997 (p= NS); the target vessel revascularization rate was 15% in 1996 and 16% in 1997 (p = NS). CONCLUSIONS: Intracoronary stenting showed a high success rate and a low incidence of 30-day occurrence of new major coronary events in both periods, despite the greater angiographic complexity of the patients treated with in 1997. These adverse variables did not have a negative influence at the 6-month clinical and angiographic follow-up, with similar rates of restenosis and ischemia-driven target lesion revascularization rates.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
OBJECTIVE: Comparative analysis of the in-hospital results after primary implantation of stents or coronary balloon angioplasty in patients with acute myocardial infarction (MI). METHODS: CENIC (National Center of Cardiovascular Interventions) gathered data on 3,924 patients undergoing coronary angioplasty (in the primary form, without the previous use of thrombolytic agents) in the first 24 hours after a MI, during the period of 1996-1998. From these 3,924 patients, 1,337 (34%) underwent stent implantation. We analyzed the success of the procedure and the occurrence of adverse cardiac events. RESULTS: In patients undergoing stent implantation there were more males (77% vs 69%, p=0.001), previous by pass surgery (6.3% vs. 4.5%, p=0.01), anterior MI and stent implantation in left descending artery (55% vs. 48% vs. p=0.009), and saphenous vein bypass grafts (3.3% vs. 1.9%). the procedure was more succesful in the group of stents (97% vs. 84%, p=0.001) and reinfarction rate (2.5 vs. 4%, p=0.002). The need for emergency revascularization was similar (1% vs. 1.1%, NS). Total in-hospital mortality was lower in stent group (3.4% vs. 7. 2%, p=0.0001) and this effect was in patients Killip class III/V (19.5% vs. 32.5%, p= 0.002) because there was no difference in patients class I/II (1.7% vs. 2.8%, p=0.9). CONCLUSION: Primary stent implantation in acute myocardial infarction showed better early results than balloon angioplasty alome.
Resumo:
PURPOSE:To determine the indication for and incidence and evolution of temporary and permanent pacemaker implantation in cardiac transplant recipients. METHODS: A retrospective review of 114 patients who underwent orthotopic heart transplantation InCor (Heart Institute USP BR) between March 1985 and May 1993. We studied the incidence of and indication for temporary pacing, the relationship between pacing and rejection, the need for pemanent pacing and the clinical follow-up. RESULTS: Fourteen of 114 (12%)heart transplant recipients required temporary pacing and 4 of 114 (3.5%) patients required permanent pacing. The indication for temporary pacing was sinus node dysfunction in 11 patients (78.5%) and atrioventricular (AV) block in 3 patients (21.4%). The indication for permanent pacemaker implantation was sinus node dysfunction in 3 patients (75%) and atrioventricular (AV) block in 1 patient (25%). We observed rejection in 3 patients (21.4%) who required temporary pacing and in 2 patients (50%) who required permanent pacing. The previous use of amiodarone was observed in 10 patients (71.4%) with temporary pacing. Seven of the 14 patients (50%) died during follow-up. CONCLUSION: Sinus node dysfunction was the principal indication for temporary and permanent pacemaker implantation in cardiac transplant recipients. The need for pacing was related to worse prognosis after cardiac transplantation.
Resumo:
OBJECTIVE: To assess whether coronary stenting in diabetic patients provides in-hospital results and clinical evolution similar to those in nondiabetic patients. METHODS: From July `97 to April '99 we performed coronary stent implantation in 386 patients with coronary heart disease, who were divided into two groups: diabetic patients and nondiabetic patients. The in-hospital results and the clinical evolution of each group were retrospectively analyzed. RESULTS: The nondiabetic group comprised 305 (79%) patients and the diabetic group 81 (21%) patients. Basic clinical and angiographic characteristics were similar. Angiographic success was in diabetics = 96.6% vs in nondiabetics = 97.9% (p=ns). Among the major complications in the in-hospital phase, the rate of myocardial infarction was higher in the diabetic group (7.4% vs 1.9%) (p=0.022). In the follow-up, a favorable and homogeneous evolution occurred in regard to asymptomatic patients, myocardial infarction, and death in the groups. A greater need for revascularization, however, existed in the diabetic patients (15% vs 2.4%, p<0.001). CONCLUSION: Coronary stenting in diabetic patients is an efficient procedure, with a high angiographic and clinical success rate similar to that in nondiabetic patients. Diabetic patients, however, had a higher incidence of in-hospital myocardial infarction and a greater need for additional myocardial revascularization.