942 resultados para Time-memory attacks
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. ^ This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. ^ Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded. ^
Resumo:
This dissertation explored memory conformity effects on people who interacted with a confederate and of bystanders to that interaction. Two studies were carried out. Study 1 was conducted in the field. A male confederate approached a group of people at the beach and had a brief interaction. About a minute later a research assistant approached the group and administered a target-absent lineup to each person in the group. Analyses revealed that memory conformity occurred during the lineup task. Bystanders were twice as likely to conform as those who interacted with the confederate. Study 2 was carried out in a laboratory under controlled conditions. Participants were exposed to two events during their time in the laboratory. In one event, participants were shown a brief video with no determinate roles assigned. In the other event participants were randomly assigned to interact with a confederate (actor condition) or to witness that interaction (bystander condition). Participants were given memory tests on both events to understand the effects of participant role (actor vs. bystander) on memory conformity. Participants answered second to all questions, following a confederate acting as a participant, who disseminated misinformation on critical questions. Analyses revealed no significant differences in memory conformity between actors and bystanders during the movie memory task. However, differences were found for the interaction memory task such that bystanders conformed more than actors on two of four critical questions. Bystanders also conformed more than actors during a lineup identification task. The results of these studies suggest that the role a person plays in an interaction affects how susceptible they are to information from a co-witness. Theoretical and applied implications are discussed. First, the results are explained through the use of two models of memory. Second, recommendations are made for forensic investigators.
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Resumo:
Hearing of the news of the death of Diana, Princess of Wales, in a traffic accident, is taken as an analogue for being a percipient but uninvolved witness to a crime, or a witness to another person's sudden confession to some illegal act. This event (known in the literature as a “reception event”) has previously been hypothesized to cause one to form a special type of memory commonly known as a “flashbulb memory” (FB) (Brown and Kulik, 1977). FB's are hypothesized to be especially resilient against forgetting, highly detailed including peripheral details, clear, and inspiring great confidence in the individual for their accuracy. FB's are dependent for their formation upon surprise, emotional valence, and impact, or consequentiality to the witness of the initiating event. FB's are thought to be enhanced by frequent rehearsal. FB's are very important in the context of criminal investigation and litigation in that investigators and jurors usually place great store in witnesses, regardless of their actual accuracy, who claim to have a clear and complete recollection of an event, and who express this confidently. Therefore, the lives, or at least the freedom, of criminal defendants, and the fortunes of civil litigants hang on the testimony of witnesses professing to have FB's. ^ In this study, which includes a large and diverse sample (N = 305), participants were surveyed within 2–4 days after hearing of the fatal accident, and again at intervals of 2 and 4 weeks, 6, 12, and 18 months. Contrary to the FB hypothesis, I found that participants' FB's degraded over time beginning at least as early as two weeks post event. At about 12 months the memory trace stabilized, resisting further degradation. Repeated interviewing did not have any negative affect upon accuracy, contrary to concerns in the literature. Analysis by correlation and regression indicated no effect or predictive power for participant age, emotionality, confidence, or student status, as related to accuracy of recall; nor was participant confidence in accuracy predicted by emotional impact as hypothesized. Results also indicate that, contrary to the notions of investigators and jurors, witnesses become more inaccurate over time regardless of their confidence in their memories, even for highly emotional events. ^
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
Accelerated graft rejection can be used to determine immune memory in the gorgonian coral swiftia exserta. The extent ofthe persistence of immune memory will be determined in this experiment using replicate sets that are time elapsed from 1, 3, and 6 month. Although corals lack circulatory systems which can be a component of adaptive systemic immunity, this study will attempt to determine whether this gorgonian coral is capable of transmitting immune information throughout its colonial body. Results showed that at each of the time points; one, three, and six months the secondary response group and the primary response group were significantly different (at p=0.001) therefore, demonstrating long term immune memory. While the primary response group and the 3rd party specificity response group were similar, both were significantly different (at p=O. 001) from the secondary response group which shows the response to be specific, with memory applicable to the original antigen. Systemic immunity was not determined to be present for 15 em and one week after initial sensitization.
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.
Resumo:
The required receiver time window after propagation through few-mode fibre is studied for a broad range of coupling and mode delay span configurations. Under intermediate coupling, effective mode delay compensation is observed for a compensation period of 25km.
Resumo:
Foundational cellular immunology research of the 1960s and 1970s, together with the advent of monoclonal antibodies and flow cytometry, provided the knowledge base and the technological capability that enabled the elucidation of the role of CD4 T cells in HIV infection. Research identifying the sources and magnitude of variation in CD4 measurements, standardized reagents and protocols, and the development of clinical flow cytometers all contributed to the feasibility of widespread CD4 testing. Cohort studies and clinical trials provided the context for establishing the utility of CD4 for prognosis in HIV-infected persons, initial assessment of in vivo antiretroviral drug activity, and as a surrogate marker for clinical outcome in antiretroviral therapeutic trials. Even with sensitive HIV viral load measurement, CD4 cell counting is still utilized in determining antiretroviral therapy eligibility and time to initiate therapy. New point of care technologies are helping both to lower the cost of CD4 testing and enable its use in HIV test and treat programs around the world.
Resumo:
People are always at risk of making errors when they attempt to retrieve information from memory. An important question is how to create the optimal learning conditions so that, over time, the correct information is learned and the number of mistakes declines. Feedback is a powerful tool, both for reinforcing new learning and correcting memory errors. In 5 experiments, I sought to understand the best procedures for administering feedback during learning. First, I evaluated the popular recommendation that feedback is most effective when given immediately, and I showed that this recommendation does not always hold when correcting errors made with educational materials in the classroom. Second, I asked whether immediate feedback is more effective in a particular case—when correcting false memories, or strongly-held errors that may be difficult to notice even when the learner is confronted with the feedback message. Third, I examined whether varying levels of learner motivation might help to explain cross-experimental variability in feedback timing effects: Are unmotivated learners less likely to benefit from corrective feedback, especially when it is administered at a delay? Overall, the results revealed that there is no best “one-size-fits-all” recommendation for administering feedback; the optimal procedure depends on various characteristics of learners and their errors. As a package, the data are consistent with the spacing hypothesis of feedback timing, although this theoretical account does not successfully explain all of the data in the larger literature.
Resumo:
Encryption and integrity trees guard against phys- ical attacks, but harm performance. Prior academic work has speculated around the latency of integrity verification, but has done so in an insecure manner. No industrial implementations of secure processors have included speculation. This work presents PoisonIvy, a mechanism which speculatively uses data before its integrity has been verified while preserving security and closing address-based side-channels. PoisonIvy reduces per- formance overheads from 40% to 20% for memory intensive workloads and down to 1.8%, on average.
Resumo:
Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded.