923 resultados para Thrust controller
Resumo:
Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.
Resumo:
The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).
Resumo:
This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via a crank shaft. However, to ensure efficient and reliable operation under all conditions, it is essential that motor current of a linear compressor follows a sinusoidal current command with a frequency which matches the system resonant frequency. The design of a high-performance current controller for linear compressor drive presents a challenge since the system is highly nonlinear, and an effective solution must be low cost. In this paper, a learning feed-forward current controller for the linear compressors is proposed. It comprises a conventional feedback proportional-integral controller and a feed-forward B-spline neural network (BSNN). The feed-forward BSNN is trained online and in real time in order to minimize the current tracking error. Extensive simulation and experiment results with a prototype linear compressor show that the proposed current controller exhibits high steady state and transient performance. © 2009 IEEE.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via crank shaft However, to ensure efficient and reliable operation under all conditions, it is essential that the motor current of the linear compressor follows a sinusoidal command profile with a frequency which matches the system resonant frequency. This paper describes a hybrid current controller for the linear compressors. It comprises a conventional proportional-integral (PI) controller, and a B-spline neural network compensator which is trained on-line and in real-time in order to minimize the current tracking error under all conditions with uncertain disturbances. It has been shown that the hybrid current controller has a superior steady-state and transient performance over the conventional carrier based PI controller. The performance of the proposed hybrid controller has been demonstrated by extensive simulations and experiments. It has also been shown that the linear compressor operates stably under the current feedback control and the piston stroke can be adjusted by varying the amplitude of the current command. © 2007 IEEE.
Resumo:
Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.
Resumo:
Internet Protocol Television (IPTV) is a system where a digital television service is delivered by using Internet Protocol over a network infrastructure. There is considerable confusion and concern about the IPTV, since two different technologies have to be mended together to provide the end customers with some thing better than the conventional television. In this research, functional architecture of the IPTV system was investigated. Very Large Scale Integration based system for streaming server controller were designed and different ways of hosting a web server which can be used to send the control signals to the streaming server controller were studied. The web server accepts inputs from the keyboard and FPGA board switches and depending on the preset configuration the server will open a selected web page and also sends the control signals to the streaming server controller. It was observed that the applications run faster on PowerPC since it is embedded into the FPGA. Commercial market and Global deployment of IPTV were discussed.
Resumo:
The present research is carried out from the viewpoint of primarily space applications where human lives may be in danger if they are to work under these conditions. This work proposes to develop a one-degree-of-freedom (1-DOF) force-reflecting manual controller (FRMC) prototype for teleoperation, and address the effects of time delays commonly found in space applications where the control is accomplished via the earth-based control stations. To test the FRMC, a mobile robot (PPRK) and a slider-bar were developed and integrated to the 1-DOF FRMC. The software developed in Visual Basic is able to telecontrol any platform that uses an SV203 controller through the internet and it allows the remote system to send feedback information which may be in the form of visual or force signals. Time delay experiments were conducted on the platform and the effects of time delay on the FRMC system operation have been studied and delineated.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.