959 resultados para Three-dimensional modeling
Resumo:
It has been shown that the apparent benefits of a two-layer stacked SOI system, i.e. packing density and speed improvements, are less than could be expected in the context of a VLSI requirement [1]. In this project the stacked SOI system has been identified as having major application in the realization of integrated, mixed technology systems. Zone-melting-recrystallization (ZMR) with lasers and electron beams have been used to produce device quality SOI material and a small test-bed circuit has been designed as a demonstration of the feasibility of this approach. © 1988.
Resumo:
This article presents a study of the development of the three-dimensional flowfield within the rotor blades of a low-speed, large-scale axial flow turbine. Measurements have been performed in the rotating and stationary frames of reference. Time-mean data have been obtained using miniature five-hole pneumatic probes, whereas the unsteady development of the flow has been determined using three-axis subminiature hot-wire anemometers. Additional information is provided by the results of blade-surface flow-visualization experiments and surface-mounted hot-film anemometers. The development of the stator exit flow, as it passes through the rotor blades, is described. Unsteady data suggest that the presence of the rotor secondary and tip leakage flows restricts the region of unsteady interaction to near midspan when the stator wakes and secondary flows are adjacent to the suction surface. Surface-mounted hot-film data show that this affects the suction-side laminar-turbulent transition process.
Resumo:
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The application of shock control to transonic airfoils and wings has been demonstrated widely to have the potential to reduce wave drag. Most of the suggested control devices are two-dimensional, that is they are of uniform geometry in spanwise direction. Examples of such techniques include contour bumps and passive control. Recently it has been observed that a spanwise array of discrete three-dimensional controls can have similar benefits but also offer advantages in terms of installation complexity and drag. This paper describes research carried out in Cambridge into various three-dimensional devices, such as slots, grooves and bumps. In all cases the control device is applied to the interaction of a normal shock wave (M=1.3) with a turbulent boundary layer. Theoretical considerations are proposed to determine how such fundamental experiments can provide estimates of control performance on a transonic wing. The potential of each class of three-dimensional device for wave drag reduction on airfoils is discussed and surface bumps in particular are identified as offering potential drag savings for typical transonic wing applications under cruise conditions.
Resumo:
3D Direct Numerical Simulations (DNS) of autoignition in turbulent non-premixed flows between fuel and hotter air have been carried out using both 1-step and complex chemistry consisting of a 22 species n-heptane mechanism to investigate spontaneous ignition timing and location. The simple chemistry results showed that the previous findings from 2D DNS that ignition occurred at the most reactive mixture fraction (ξMR) and at small values of the conditional scalar dissipation rate (N|ξMR) are valid also for 3D turbulent mixing fields. Performing the same simulation many times with different realizations of the initial velocity field resulted in a very narrow statistical distribution of ignition delay time, consistent with a previous conjecture that the first appearance of ignition is correlated with the low-N content of the conditional probability density function of N. The simulations with complex chemistry for conditions outside the Negative Temperature Coefficient (NTC) regime show behaviour similar to the single-step chemistry simulations. However, in the NTC regime, the most reactive mixture fraction is very rich and ignition seems to occur at high values of scalar dissipation. Copyright © 2006 by ASME.
Resumo:
Three-dimensional bumps have been developed and investigated, aiming at the two major objectives of shock-wave / boundary-layer interaction control, i.e. drag reduction and suppression of separation, simultaneously. An experimental investigation has been conducted for a default rounded bump in channel now at University of Cambridge and a computational study has been performed for a spanwise series of rounded bumps mounted on a transonic aerofoil at University of Stuttgart. Observed in both cases are wave drag reduction owing to A-shock structures produced by three-dimensional surface bumps and mild control effects on the boundary layer. The effects of rough surface and tall extension have been investigated as well as several geometric variations and multiple bump configurations. A double configuration of narrow rounded bumps has been found to best perform amongst the tested, considerably reducing wave drag through a well-established A-shock structure with little viscous penalty and thus achieving substantial overall drag reduction. Counter-rotating streamwise vortex pairs have been produced by some configurations as a result of local flow separation, but they have been observed to be confined in relatively narrow wake regions, expected to be beneficial in suppressing large-scale separation under off-design condition despite increase of viscous drag. On the whole a large potential of three-dimensional control with discrete rounded bumps has been demonstrated both experimentally and numerically, and experimental investigation of bumps fitted on a transonic aerofoil or wing is suggested toward practical application.
Resumo:
An experimental investigation into the response of transonic SBLIs to periodic down-stream pressure perturbations in a parallel walled duct has been conducted. Tests have been carried out with a shock strength of M ∞ = 1.5 for pressure perturbation frequencies in the range 16-90 Hz. Analysis of the steady interaction at M∞ = 1.5 has also been made. The principle measurement techniques were high speed schlieren photography and laser Doppler anemometry. The structure of the steady SBLI was found to be highly three-dimensional, with large corner flows and sidewall SBLIs. These aspects are thought to influence the upstream transmission of pressure information through the interaction by affecting the post-shock flow field, including the extent of regions of secondary supersonic flow. At low frequency, the dynamics of shock motion can be predicted using an inviscid analytical model. At increased frequencies, viscous effects become significant and the shock exhibits unexpected dynamic behaviour, due to a phase lag between the upstream transmission of pressure information in the core flow and in the viscous boundary layers. Flow control in the form of micro-vane vortex generators was found to have a small impact on shock dynamics, due to the effect it had on the post-shock flow field outside the viscous boundary layer region. The relationship between inviscid and viscous effects is developed and potential destabilising mechanisms for SBLIs in practical applications are suggested. Copyright © 2009 by Paul Bruce and Holger Babinsky.
Resumo:
Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.
Resumo:
This paper reports the availability of a database of protein structural domains (DDBASE), an alignment database of homologous proteins (HOMSTRAD) and a database of structurally aligned superfamilies (CAMPASS) on the World Wide Web (WWW). DDBASE contains information on the organization of structural domains and their boundaries; it includes only one representative domain from each of the homologous families. This database has been derived by identifying the presence of structural domains in proteins on the basis of inter-secondary structural distances using the program DIAL [Sowdhamini & Blundell (1995), Protein Sci. 4, 506-520]. The alignment of proteins in superfamilies has been performed on the basis of the structural features and relationships of individual residues using the program COMPARER [Sali & Blundell (1990), J. Mol. Biol. 212, 403-428]. The alignment databases contain information on the conserved structural features in homologous proteins and those belonging to superfamilies. Available data include the sequence alignments in structure-annotated formats and the provision for viewing superposed structures of proteins using a graphical interface. Such information, which is freely accessible on the WWW, should be of value to crystallographers in the comparison of newly determined protein structures with previously identified protein domains or existing families.
Triple Decomposition Method for Vortex Identification in Two-Dimensional and Three-Dimensional Flows