955 resultados para Thioredoxin Reductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K-l of 0.9 muM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1AI, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2136, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our groups have had a long-term interest in utilizing bacterial systems in the characterization of bioactivation and detoxication reactions catalyzed by cytochrome P450 (P450) and glutathione transferase (GST) enzymes. Bacterial systems remain the first choice for initial screens with new chemicals and have advantages, including high-throughput capability. Most human P450s of interest in toxicology have been readily expressed in Escherichia coli with only minor sequence modification. These enzymes can be readily purified and used in assays of activation of chemicals. Bicistronic systems have been developed in order to provide the auxiliary NADPH-P450 reductase. Alternative systems involve these enzymes expressed together within bacteria. In one approach, a lac selection system is used with E. coli and has been applied to the characterization of inhibitors of P450s 1A2 and 1131, as well as in basic studies involving random mutagenesis. Another approach utilizes induction of the SOS (umu) response in Salmonella typhimurium, and systems have now been developed with human P450s 1A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4, which have been used to report responses from heterocyclic amines. S. typhimurium his reporter systems have also been used with GSTs, first to demonstrate the role of rat GST 5-5 in the activation of dihalomethanes. These systems have been used to compare these GSTs with regard to activation of dihaloalkanes and potential toxicity. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current methods used to genotype point mutations in Plasmodium falciparum genes involved in resistance to antifolate drugs include restriction digestion of PCR products, allele-specific amplification or sequencing. Here we demonstrate that known point mutations in dihydrofolate reductase and dihydropteroate synthase can be scored quickly and accurately by single-nucleotide primer extension and detection of florescent products on a capillary sequencer. We use this method to genotype parasites in natural infections from the Thai-Myanmar border. This approach could greatly simplify large-scale screening of resistance mutations of the type required for evaluating and updating antimalarial drug treatment policies. The method can be easily adapted to other P. falciparum genes and will greatly simplify scoring of point mutations in this and other parasitic organisms. © 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of nitrogen acquisition, transport and assimilation were investigated in species of an Atlantic Forest succession over calcareous soil in south-eastern Brazil. Differences in behaviour were observed within the regeneration guilds. Pioneer species showed high leaf nitrogen contents, a high capacity to respond to increased soil nitrogen availability, a high capacity for leaf nitrate assimilation and were characterized by the transport of nitrate + asparagine. At the other end of the succession, late secondary species had low leaf nitrogen contents, little capacity to respond to increased soil nitrogen availability, low leaf nitrate assimilation and were active in the transport of asparagine + arginine. The characteristics of nitrogen nutrition in some early secondary species showed similarities to those of pioneer species whereas others more closely resembled late secondary species. Average leaf delta(15)N values increased along the successional gradient. The results indicate that the nitrogen metabolism characteristics of species may be an additional ecophysiological tool in classifying tropical forest tree species into ecological guilds, and may have implications for regeneration programmes in degraded areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Bioquímica, especialidade de Bioquímica-Física pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRd¢Rd), were characterized. FlRd contains 2.9 ( 0.5 iron atoms/subunit, whereas FlRd¢Rd contains 2.1 ( 0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRd¢Rd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140 ( 15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140 ( 15 mV (Flox/Flsq) and -180 ( 15 mV (Flsq/Flred), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to DesulfoVibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioma is the most frequent form of malignant brain tumor in the adults and childhood. There is a global tendency toward a higher incidence of gliomas in highly developed and industrialized countries. Simultaneously obesity is reaching epidemic proportions in such developed countries. It has been highly accepted that obesity may play an important role in the biology of several types of cancer. We have developed an in vitro method for the understanding of the influence of obesity on glioma mouse cells (Gl261). 3T3-L1 mouse pre-adipocytes were induced to the maturity. The conditioned medium was harvested and used into the Gl261 cultures. Using two-dimension electrophoresis it was analyzed the proteome content of Gl261 in the presence of conditioned medium (CGl) and in its absence (NCGl). The differently expressed spots were collected and analyzed by means of mass spectroscopy (MALDI-TOF-MS). Significantly expression pattern changes were observed in eleven proteins and enzymes. RFC1, KIF5C, ANXA2, N-RAP, RACK1 and citrate synthase were overexpressed or only present in the CGl. Contrariwise, STI1, hnRNPs and phosphoglycerate kinase 1 were significantly underexpressed in CGl. Aldose reductase and carbonic anhydrase were expressed only in NCGl. Our results show that obesity remodels the physiological and metabolic behavior of glioma cancer cells. Also, proteins found differently expressed are implicated in several signaling pathways that control matrix remodeling, proliferation, progression, migration and invasion. In general our results support the idea that obesity may increase glioma malignancy, however, some interesting paradox finding were also reported and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In twenty five patients who presented the cutaneous form of loxoscelism, serum haptoglobin and lactic dehydrogenase, erythrocyte glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, methemoglobin, bilirubin and reticulocytes were investigated after bite. No hemolysis was detected but an increase in methemoglobin was found in 54% of the cases; in 7% it was between 1.1% and 2%, in 27% it ranged from 2.1% to 4%, and in 20% from 4.1% to 8%. Blood samples of a normal, blood group 0 individual and of a patient who exhibited methemoglobinemia after Loxosceles bite were incubated separately with antisera against Loxosceles gaucho, Crotalus terrificus, Bothrops jararaca, with Loxosceles gaucho venom and 0.3% phenol. No methemoglobin was found after 1, 4,8 and 15 days in both sets of samples. At the 25th day all the samples, including the controls, exhibited similar methemoglobin reductase decrease. The data suggest that the methemoglobinemia which occurs in 50% of the patients probably arises from in vivo venom metabolism, inasmuch as the crude venom does not induce methemoglobinemia.