965 resultados para Thin-plate spline analysis
Resumo:
Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.
Resumo:
Recent studies emphasize the importance of the clinical-histology correlation in laryngeal pathologies. Objective: To compare the ENT diagnosis with the pathology diagnosis one of 132 surgical specimens, from 119 patients with vocal nodules and polyps. Method: Retrospective study. We investigated the paraffin blocks corresponding to the lesions of the operated patients. We made new histology cross-sections, totaling 396 new slides, divided into three groups: hematoxylin and eosin, Gomori trichrome and PAS. We analyzed the following histological parameters: epithelium, lamina propria, basement membrane, vascular changes. We compared the laryngological and pathological diagnoses, and we did the statistical analysis, checking the predominant histological aspects in each lesion. Results: There was an agreement between the clinical and pathological diagnoses in 123 (93.18%) of 132 lesions analyzed (42.42% nodules and 50.76% polyps). In the histological parameters we found: epithelial changes such as nodules hyperplasia (82.14%) and polyp atrophy (31.34%). Lamina propria: edema in polyps (71.43%), fibrosis in the nodules (57.14%). Basement membrane: thickened nodules (100%), thin/no change in polyps (100%). There was a predominance of vascular changes in the polyps. Conclusion: We found a high correlation between the ENT diagnosis and the pathology report. Histopathologically, the nodules presented with predominantly epithelial changes, lamina propria and basement membrane fibrosis, while the polyps by changes strictly on the lamina propria and vascular aspects.
Resumo:
A novel method of preparation of the Si nanoparticles (NPs) incorporated in tellurite TeO2-WO3-Bi2O3 (TWB) thin films is proposed. This mew method applies RF magnetron sputtering technique at room temperature. The incorporation of Si NP was confirmed by transmission electron microscopy (TEM); isolated Si NPs with diameters of around 6 nm are observed. Energy dispersive X-ray spectroscopy (EDS) was performed during TEM analysis in order to confirm the presence of Si NP and also the other elements of the thin film. The thin films are explored with respect to the photoinduced changes of the reflectivity within the 400-65 nm spectra range using a 10 ns pulsed Nd:YAG with power densities varying up to 400 MW/cm2 and beam diameter within the 3-5 mm range. The observed processes are analyzed within a framework of trapping level conceptions for the Si NP. The possible application of the discovered materials as optical sensitive sensors is proposed. © 2013 Elsevier B.V.
Resumo:
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. © 2013 Elsevier Ltd.
Resumo:
This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.
Resumo:
An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique.In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors.Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently.The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology).The self-consistent analysis provided reliable chemical information about the film, despite its heavy substrate.As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities.© 2013 Elsevier B.V.All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This issue of the FAL Bulletin deals with road safe ty and its impact on children by examining data collected on road safe ty in the Eastern Republic of Uruguay by the Gonzalo Rodríguez Foundation wi thin the framework of its EDU-CAR Road Safety Plan for Children.
Resumo:
Mikania lindleyana DC (Asteraceae) é uma trepadeira arbustiva, perene, lenhosa e sem gavinhas, com caule volúvel, cilíndrico estriado, verde e ramoso. É utilizada na Amazônia como diurético, antiinflamatório, analgésico, anti-hipertensivo, antiulceroso. Este trabalho teve por objetivo desenvolver um método para caracterização do extrato hidroetanólico das folhas de M. lindleyana DC por Cromatografia Líquida de Alta Eficiência (CLAE). O extrato hidroetanólico (tintura) preparado conforme a FARMACOPÉIA BRASILEIRA V, 2010 foi submetido, após secagem, a análise fitoquímica, por Cromatografia em Camada Delgada (CCD) e por CLAE. Na prospecção química, observou-se a presença de cumarinas, alcalóides, aminoácidos, açúcares redutores, fenóis, taninos, esteróides, terpenos, saponinas e ácidos orgânicos. Na análise das frações (hexânica, clorofórmica e acetato de etila), do extrato hidroetanólico bruto e da cumarina (1mg/mL) por CCD, utilizando como eluente tolueno/diclorometano/acetona (45:25:30) observou-se no UV (365nm) bandas fluorescentes de cor verde clara (Rf 0.61) características de cumarina. Na análise do extrato bruto e da fração clorofórmica por CLAE e uma solução metanólica de cumarina pura a 0,1 mg/mL, utilizando como eluente metanol/água (47:53), picos no Rt de cerca de 6.00 minutos foram observados correspondentes a espectro característico com máximos de absorção entre 270 nm e 300 nm. Os resultados demonstram a presença de cumarina em EHEB e FC. nas respectivas quantidades de 0,014 no EHEB e 0,209 na FC.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The spin injector part of spintronic FET and diodes suffers from fatigue due to rising heat on the depletion layer. In this study the stiffness of Ga1-xMnxAs spin injector in terms of storage modulus with respect to a varying temperature, 45 degrees C <= T <= 70 degrees C was determined. It was observed that the storage modulus for MDLs (Manganese Doping Levels) of 0%, 1% and 10% decreased with increase in temperature while that with MDLs of 20% and 50% increase with increase in temperature. MDLs of 20% and 50% appear not to allow for damping but MDLs <= 20% allow damping at temperature range of 45 degrees C <= T <= 70 degrees C. The magnitude of storage moduli of GaAs is smaller than that for ferromagnetic Ga1-xMnxAs systems. The loss moduli for GaAs were found to reduce with increase in temperature. Its magnitude of reducing gradient is smaller than Ga1-xMnxAs systems. The two temperature extremes show a general reduction in loss moduli for different MDLs at the study temperature range. From damping factor analysis, damping factors for ferromagnetic Ga1-xMnxAs was found to increase with decrease in MDLs contrary to GaAs which recorded the largest damping factor at 45 degrees C <= T <= 70 degrees C Hence, MDL of 20% shows little damping followed by 50% while MDL of 0% has the most damping in an increasing trend with temperature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.