972 resultados para Thermodynamics
Resumo:
We present a class of systems for which the signal-to-noise ratio as a function of the noise level may display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of at a single value which has occurred in systems considered up to now in the framework of stochastic resonance.
Resumo:
Temperature and velocity correlation functions in a fluid subjected to conditions creating both a temperature and a velocity gradient are computed up to second order in the gradients. Temperature and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity goes to infinity one gets the temperature correlation function for a solid under a temperature gradient, which contains a long-ranged contribution, quadratic in the temperature gradient. The velocity correlation function also exhibits long-range behavior. In a particular case its equilibrium term is diagonal whereas the nonequilibrium correction contains nondiagonal terms.
Resumo:
A new solvable model of synchronization dynamics is introduced. It consists of a system of long range interacting tops or magnetic moments with random precession frequencies. The model allows for an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent solution is performed for different types of orientational disorder. A system with orientational disorder always synchronizes in the absence of noise.
Resumo:
Populations of phase oscillators interacting globally through a general coupling function f(x) have been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional giving close expressions for it in terms of a generating function. We have also proposed a family of exactly solvable models with singular couplings showing that it is possible to map the synchronization phenomenon into other physical problems. In particular, the stationary solutions of the least singular coupling considered, f(x) = sgn(x), have been found analytically in terms of elliptic functions. This last case is one of the few nontrivial models for synchronization dynamics which can be analytically solved.
Resumo:
Thermal fluctuations around inhomogeneous nonequilibrium steady states of one-dimensional rigid heat conductors are analyzed in the framework of generalized fluctuating hydrodynamics. The effect of an external source of noise is also considered. External fluctuations come from temperature and position fluctuations of the source. Contributions of each kind of noise to the temperature correlation function are computed and compared through the study of its asymptotic behavior.
Resumo:
We show a new mechanism to extract energy from nonequilibrium fluctuations typical of periodically driven non-Hermitian systems. The transduction of energy between the driving force and the system is revealed by an anomalous behavior of the susceptibility, leading to a diminution of the dissipated power and consequently to an improvement of the transport properties. The general framework is illustrated by the analysis of some relevant cases.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
We compute nonequilibrium correlation functions about the stationary state in which the fluid moves as a consequence of tangential stresses on the liquid surface, related to a varying surface tension (thermocapillary motion). The nature of the stationary state makes it necessary to take into account that the system is finite. We then extend a previous analysis on fluctuations about simple stationary states to include some effects related to the finite size of the sample.
Resumo:
Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
Resumo:
We consider Brownian motion on a line terminated by two trapping points. A bias term in the form of a telegraph signal is applied to this system. It is shown that the first two moments of survival time exhibit a minimum at the same resonant frequency.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
We study second-order properties of linear oscillators driven by exponentially correlated noise. We focus our attention on dynamical exponents and crossovers and also on resonance phenomena that appear when the driving noise is dichotomous. We also obtain the power spectrum and show its different behaviors according to the color of the noise.
Resumo:
We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.