930 resultados para Tetradecanoylphorbol Acetate -- pharmacology
Resumo:
Mode of access: Internet.
Resumo:
Print issues ceased with v. 339, no.3 (Dec. 2011)
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
Includes bibliography.
Resumo:
Includes bibliography.
Investigation of signaling pathways that mediate the inotropic effect of urotensin-II in human heart
Resumo:
Objective: This study investigated signaling pathways that may contribute to the potent positive inotropic effect of human urotensin-II (hU-II) in human isolated right atrial trabeculae obtained from patients with coronary artery disease. Methods: Trabeculae were set up in tissue baths and stimulated to contract at 1 Hz. Tissues were incubated with 20 nM hU-II with or without phorbol 12-myristate 13-acetate (PMA, 10 muM) to desensitize PKC, the PKC inhibitor chelerythrine (10 muM), 10 muM 4alpha-phorbol that does not desensitize PKC, the myosin light chain kinase inhibitor wortmannin (50 nM, 10 muM), or the Rho kinase inhibitor Y-27632 (0.1 - 10 muM). Activated RhoA was determined by affinity immunoprecipitation, and phosphorylation of signaling proteins was determined by SDS-PAGE. Results: hU-II caused a potent positive inotropic response in atrial trabeculae, and this was concomitant with increased phosphorylation of regulatory myosin light chain (MLC-2, 1.8 +/- 0.4-fold, P < 0.05, n = 6) and PKCalpha/betaII (1.4 +/- 0.2-fold compared to non-stimulated controls, P < 0.05, n = 7). Pretreatment of tissues with PMA caused a marked reduction in the inotropic effect of hU-II, but did not affect hU-II-mediated phosphorylation of MLC-2. The inotropic response was inhibited by chelerythrine, but not 4alpha-phorbol or wortmannin. Although Y-27632 also reduced the positive inotropic response to hU-II, this was associated with a marked reduction in basal force of contraction. RhoA. GTP was immunoprecipitated in tissues pretreated with or without hU-II, with findings showing no detectable activation of RhoA in the agonist stimulated tissues. Conclusions: The findings indicated that hU-II increased force of contraction in human heart via a PKC-dependent mechanism and increased phosphorylation of MLC-2, although this was independent of PKC. The positive inotropic effect was independent of myosin light chain kinase and RhoA-Rho kinase signaling pathways. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Today, quantitative real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. However, for an exact comparison of mRNA transcription in different samples or tissues it is crucial to choose the appropriate reference gene. Recently glyceraldehyde 3-phosphate dehydrogenase and P-actin have been used for that purpose. However, it has been reported that these genes as well as alternatives, like rRNA genes, are unsuitable references, because their transcription is significantly regulated in various experimental settings and variable in different tissues. Therefore, quantitative real-time PCR was used to determine the mRNA transcription profiles of 13 putative reference genes, comparing their transcription in 16 different tissues and in CCRF-HSB-2 cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and ionomycin. Our results show that Classical reference genes are indeed unsuitable, whereas the RNA polymerase II gene was the gene with the most constant expression in different tissues and following stimulation in CCRF-HSB-2 cells. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Objective To determine the pharmacokinetics of doxorubicin in sulphur-crested cockatoos, so that its use in clinical studies in birds can be considered. Design A pharmacokinetic study of doxorubicin, following a single intravenous (IV) infusion over 20 min, was performed in four healthy sulphur-crested cockatoos (Cacatua galerita). Procedure Birds were anaesthetised and both jugular veins were cannulated, one for doxorubicin infusion and the other for blood collection. Doxorubicin hydrochloride (2 mg/kg) in normal saline was infused IV over 20 min at a constant rate. Serial blood samples were collected for 96 h after initiation of the infusion. Plasma doxorubicin concentrations were assayed using an HPLC method involving ethyl acetate extraction, reverse-phase chromatography and fluorescence detection. The limit of quantification was 20 ng/mL. Established non-parametric methods were used for the analysis of plasma doxorubicin data. Results During the infusion the mean +/- SD for the C-max of doxorubicin was 4037 +/- 2577 ng/mL. Plasma concentrations declined biexponentially immediately after the infusion was ceased. There was considerable intersubject variability in all pharmacokinetic variables. The terminal (beta-phase) half-life was 41.4 +/- 18.5 min, the systemic clearance (Cl) was 45.7 +/- 18.0 mL/min/kg, the mean residence time (MRT) was 4.8 +/- 1.4 min, and the volume of distribution at steady state (V-SS) was 238 131 mL/kg. The extrapolated area under the curve (AUC(0-infinity)) was 950 +/- 677 ng/mL.h. The reduced metabolite, doxorubicinol, was detected in the plasma of all four parrots but could be quantified in only one bird with the profile suggesting formation rate-limited pharmacokinetics of doxorubicinol. Conclusions and clinical relevance Doxorubicin infusion in sulphur-crested cockatoos produced mild, transient inappetence. The volume of distribution per kilogram and terminal half-life were considerably smaller, but the clearance per kilogram was similar to or larger than reported in the dog, rat and humans. Traces of doxorubicinol, a metabolite of doxorubicin, were detected in the plasma.
Resumo:
Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.
Resumo:
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.
Resumo:
A new microscale method is reported for the determination of doxorubicin and its active metabolite, doxorubicinol, in parrot plasma. Sample workup involved acetonitrile protein precipitation, ethyl acetate extraction, followed by back extraction into HCl. Separations were achieved on a phenyl-hexyl column at 30 degrees C using acetonitrile (17%, v/v) in 0.01 M orthophosphoric acid (83%, v/v) delivered via a linear flow program. Fluorometric detection wavelengths were 235 nm (excitation) and 550 nm (emission). Calibration plots were linear (1 2 > 0.999), and recoveries were 71-87% from 20 to 400 ng/mL. Assay imprecision was
Resumo:
Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of L-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with L-arginine (5% in food, 3.4 +/- 0.3 g.kg body wt(-1).day(-1)). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. L-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of L-arginine.
Resumo:
1 The effectiveness of a selective endothelin receptor- A ( ET- A) antagonist, A- 127722 ( approximately 10 mg kg(-1) day(-1) as 200 mg kg(-1) powdered food), to reverse existing cardiac remodelling and prevent further remodelling was tested in deoxycorticosterone acetate ( DOCA)- salt hypertensive rats. 2 Uninephrectomised rats ( UNX) administered DOCA ( 25 mg every fourth day s. c.) and 1% NaCl in drinking water for 28 days developed hypertension ( systolic blood pressure ( BP): UNX 128 +/- 6 mmHg, DOCA- salt 182 +/- 5* mmHg; *P