937 resultados para Tethered swimming model for rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Physical exercises have been recommended in the prevention of non-insulin dependent diabetes mellitus (NIDDM), but the mechanisms involved in this intervention are not yet fully understood. Experimental models offer the opportunity for the study of this matter. The present study was designed to analyze the diabetes evolution in rats submitted to neonatal treatment with alloxan with the objective of verifying the suitability of the model to future studies with exercises. For this, newly born rats (6 days old) received intraperitoneal alloxan (A = 200 mg/kg of body weight). Rats injected with vehicle (citrate buffer) were used as controls (C). The fasting blood glucose level (mg/dL) was higher in the alloxan group at the day 28 (C=47.25 +/- 5.08; A=54.51 +/- 7.03) but not at the 60 day of age (C=69.18 +/- 8.31; A=66.81 +/- 6.08). The alloxan group presented higher blood glucose level during glucose tolerance test (GTT) (mg/dL. 120 min) in relation to the control group both at day 28 (C=16908.9 +/- 1078.8; A=21737,7 +/- 1106.4) and at day 60 (C=11463.45 +/- 655.30; A=15282.21 +/- 1221.84). Insulinaemia during GTT (ng/mL.120 min) was lower at day 28 (C=158.67 +/- 33.34; A=123.90 +/- 19.80), but presented no difference at day 60 (C=118.83 +/- 26.02; A=97.8 +/- 10.88). At day 60, the glycogen concentration in the soleus muscle (mg/100mg) was lower in the alloxan group (0.3 +/- 0.13) in relation to the control group (0.5 +/- 0.07). No difference was observed between groups in relation to (mu mol/g.h): Glucose Uptake (C = 5.8 +/- 0.63; A = 5.2 +/- 0.73); Glucose Oxidation (C= 4.3 +/- 1.13; A= 3.9 +/- 0.44); Glycogen Synthesis (C= 0.8 +/- 0.18; A= 0.7 +/- 0.18) and Lactate Production (C= 3.8 +/- 0.8; A= 3.8 0.7) by the isolated soleus muscle. The glucose-stimulated insulin secretion (16.7mM) by the isolated islets (ng/5 islets. h) of the alloxan group was lower (14.3 +/- 4.7) than the control group (32.0 +/- 7.9). Thus, we may conclude that this neonatal diabetes induction model gathers interesting characteristics and may be useful for further studies on the role of the exercise in the diabetes mellitus appearance.
Resumo:
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.
Resumo:
The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the lactate minimum test in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To investigate the alterations of glucose homeostasis and variables of the insulin-like growth factor-I (IGF- 1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg(-1) b.w.). Training program consisted of swimming 5 days week(-1), 1 h day(-1), during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF-1, and IGF binding protein-3(IGFBP-3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF-1 content. Diabetes decreased serum GH, IGF-1, IGFBP-3, liver glycogen, and cerebellum IGF-1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF-1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF-1 concentrations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Aims: This study aims to investigate the influence of physical training on the immune system of diabetic rats. Materials and Methods: Adult male Wistar rats were distributed into Sedentary Control (SC), Trained Control (TC), Sedentary Diabetic (SD) and Trained Diabetic (TD) groups were used. Diabetes was induced by alloxan (32 mg/bw-i.v.). Training protocol consisted of swimming, at 32 18C, one hour/day, five days/week, supporting an overload equivalent to 5 of the body weight, during four weeks. At the end of the experiment the rats were sacrificed by decapitation and blood samples were collected for glucose, insulin, albumin, hematocrit determinations, total and differential leukocyte counting. Additionally, liver samples for glycogen analyses were obtained. Results: The results were analyzed by one way at a significance level of 5. Diabetes reduced blood insulin, liver glycogen stores and increased blood glucose and neutrophil count. Physical training restored glycemia, liver glycogen levels, neutrophils and lymphocytes count in diabetic rats. Conclusions: In summary, physical training was able to improve metabolic and immunological aspects in the experimental diabetic rats.
Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to access the P-t(Lim) model in swimming, applying the load control available in full tethered swim condition. Its physiological meaning for the determination of boundary of heavy/severe domains was assessed from the relationships with critical velocity (CV), critical power (CP) and maximal lactate steady state (MLSS). The velocity at MLSS (v(MLSS) = 1.17 +/- 0.11 m/s) and CV (1.19 +/- 0.12 m/s) were significantly different. Similarly, the power at MLSS (p(MFEL) = 89.2 +/- 15.1 W) and CP (99.4 +/- 22.9 W) were significantly different. There was no difference between lactate concentration at vMLSS (3.54 +/- 0.9 mM) and p(MLSS) (3.76 +/- 0.6 mM). Significant Pearson's coefficients (r > 0.70) were observed among v(MLSS) and P-MLSS with their respective values on time-limited model. Thus, the tethered-crawl condition seems to be valid to determine the boundary of heavy/severe domains, and to access the aerobic capacity of swimmers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study investigated the effects of swimming training and metformin on metabolic aspects of obese rats. Wistar rats were divided into control (C), obese (O), Trained Obese (TO) and metformin obese (MO) groups. Obesity was induced by subcutaneous monosodium glutamate injection (4 mg/g body weight). Exercise program consisted in swimming 1 h/day, 5 days/week, for 8 weeks, supporting a load corresponding to 5% of body weight. Metformin was dissolved in the drinking water (1.4 mg/ml) for 8 weeks. At the end of the experimental period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin and triglycerides and hematocrit. Samples of gastrocnemius muscle and liver were removed to evaluate triglycerides content MSG-induced obesity, increased serum glucose, insulin and triglycerides, while physical training was able to recover serum glucose and insulin and metformin treatment recovered serum insulin and slightly reduced the serum glucose. MSG-induced obesity also increased liver triglycerides content and physical training and metformin administration recovered these parameters. It was concluded that in MSG obese rats, physical exercise and metformin induced important metabolic alterations associated with an improvement in glucose homeostasis and in liver fat content. Obesity and Metabolism 2009; 5: 129-133.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study investigated the effects of moderate physical training on some of the parameters in the GH-IGF axis in experimental diabetic rats. Male Wistar rats were allocated into the following groups: sedentary control, trained control, sedentary diabetic, trained diabetic. Diabetes was induced by alloxan (32 mg/kg, b.w. iv). The physical training protocol consisted of 1 h swimming session/day, 5 days/week for 8 weeks supporting a load corresponding to 90% of maximal lactate steady state. After the experimental period, blood was collected to measure serum glucose, insulin, triglycerides, albumin, insulin-like growth factors-I (IGF-I), and growth hormone (GH). Pituitary gland was removed for GH quantification. Diabetes increased blood glucose and triglycerides and decreased insulin, IGF-I, serum and pituitary GH. Physical training decreased glucose and triglycerides, and also counteracted the reduction of serum IGF-I in diabetic rats. In conclusion, physical training recovered serum IGF-I showing no alteration of serum or pituitary GH levels.
Resumo:
Purpose: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. Methods: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. Results: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. Conclusion: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.