899 resultados para Tensile strength testing
Resumo:
Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
Mg-7 mass%Gd-x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg-7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg-7Gd-5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 degrees C, respectively, which is about 1.8 times as high as the Mg-7Gd binary alloy. When x is more than 3, the amount of Mg-5 (Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the beta-Mg-5(Gd,Y) precipitate.
Resumo:
Mg-8Gd-0.6Zr-xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg-8Gd-0.6Zr-3Nd alloy is 103, it is about 1.3 times more than that of the Mg-8Gd-0.6Zr alloy. The aged Mg-8Gd-0.6Zr-3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 degrees C, respectively. Which are about 2 times higher than those of Mg-8Gd-0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness Of Mg5RE and Mg12RE precipitates in the alloy.
Resumo:
Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.
Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit
Resumo:
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 degrees C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.
Resumo:
A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalenesubstituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 degrees C, 10% weight loss temperature in excess of 529 degrees C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 Wa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2 = 3.99) and permeability selectivity coefficient of oxygen to nitrogen (P-O2/P-N2 = 5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.
Resumo:
A series of dianhydride monomers, 2,2'-disubstituted-4,4',5,5'-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3',4,4'-biphenyttetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyintides. The effects of varying 2,2'-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2'-dinitro-BPDA and 2,2'-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N-2, O-2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (P-O2) and permselectivity of oxygen to nitrogen (PO2/N-2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively.
Resumo:
A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.
Resumo:
Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.
Resumo:
Poly(propylene carbonate) (PPC) showed predominantly degradation under electron-beam irradiation, accompanied by deterioration of its mechanical performance due to sharp decrease of the molecular weight. Crosslinked PPC was prepared by addition of polyfunctional monomer (PFM) to enhance the mechanical performance of PPC. When 8 wt% of PFM like triallyl isocyanurate (TAIL) was added, crosslinked PPC with a gel fraction of 60.7% was prepared at 50 kGy irradiation dose, which showed a tensile strength at 20 degrees C of 45.5 MPa, whereas it was only 38.5 MPa for pure PPC. The onset degradation temperature (T-i) and glass transition temperature (T-g) of this crosslinked PPC was 246 degrees C and 45 degrees C, respectively, a significant increase related to pure PPC of 211 degrees C and 36 C. Therefore, thermal and mechanical performances of PPC could be improved via electron-beam irradiation in the presence of suitable PFM.
Resumo:
A reactive type nonionic surfactant, monostearic acid monomaleic acid glycerol diester (MMGD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene ( LLDPE) with MMGD was carried out by using beta ray irradiation in air in a twin-screw extruder. Evidence of the grafting of MMGD as well as its extent was determined by Fourier-transformed infrared (FT-IR) spectroscopy. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-MMGD was investigated by using differential scanning calorimety ( DSC). Compared with neat LLDPE, the crystallization temperature ( Tc) of LLDPE-g-MMGD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of MMGD content. It showed that the grafted MMGD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-MMGD film. The wettability is expressed by the water contact angle. With an increasing percentage of MMGD, the contact angles of water on film surface of LLDPE- g-MMGD decrease monotonically.
Resumo:
A novel nonionic surfactant, glycerol monostearic acid monomaleic acid diester (GMMD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene (LLDPE) with GMMD was carried out by using P-ray irradiation in a twin-screw extruder. Evidence of the grafting of GMMD, as well as its extent, was determined by FT-IR. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-GMMD was investigated by using differential scanning calorimety (DSC). Compared with neat LLDPE, the crystallization temperature (T,) of LLDPE-g-GMMD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of GMMD content. It showed that the arafted GMMD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-GMMD film. Accelerated dripping property of film samples was investigated. The dripping duration of LLDPE-g-GMMD film and commercial anti-fog dripping film at 60 degrees C were 52 days and 17 days, respectively.
Resumo:
In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.