972 resultados para Temporary structures (Building)
Resumo:
Conferência: 2nd Experiment at International Conference - 18-20 September 2013
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Mestrado em Gestão e Avaliação de Tecnologias em Saúde
Resumo:
O presente trabalho integra-se no âmbito dos requisitos definidos na unidade curricular DIPRE que faz parte do 2º ano do Curso de Mestrado em Tecnologia e Gestão das Construções do Instituto Superior de Engenharia do Porto do Politécnico do Porto. Este trabalho consistiu na elaboração do projecto de estabilidade de um edifício de habitação multifamiliar, tendo-se também realizado uma análise comparativa de dois programas de cálculo estrutural. O trabalho foi subdividido em parte escrita e parte desenhada. Sendo a primeira constituída pelos seguintes capítulos: 1 – Memória descritiva e justificativa de cálculo 2 – Mapa de quantidades de trabalho e de materiais 3 – Estimativa orçamental 4 – Condições técnicas do projecto de fundações e estruturas A parte desenhada incluí 16 desenhos, representativos dos esquemas estruturais adoptados e dos pormenores construtivos dos elementos estruturais
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecância
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
For industrial environments it is true that Ethernet technologies are there to stay. In fact, a number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor applications. Fullduplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional field bus networks? Fieldbus fundamentalists often argue that the two things are not comparable. In fact, Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. Where are the higher layers and the application enablers that permit building real industrial applications? And, taking for free that they are available, what is the impact of those protocols, mechanisms and application models on the overall performance of Ethernet-based distributed factory-floor applications?
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Área de Especialização em Estruturas
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.