982 resultados para Temperature distribution
Resumo:
Temperature-dependent population growth of diamondback moth (DBM) Plutella xylostella (L.), a prolific insect pest of crucifer vegetables, was studied under six constant temperatures in the laboratory. The objective of the study was to predict the impacts of temperature changes on the population of DBM at high-resolution scales along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted on the data for modeling the development, mortality, longevity and oviposition of the pest. The best-fitted functions for each life stage were compiled for estimating the life table parameters of the species by stochastic simulations. To quantify the impacts on the pest, three indices (establishment, generation and activity) were computed using the estimates of life table parameters and temperature data obtained at local scale (current scenario 2013) and downscaled climate change data (future scenario 2055) from the AFRICLIM database. To measure and represent the impacts of temperature change along the altitude on the pest; the indices were mapped along the altitudinal gradients of Kilimanjaro and Taita Hills, in Tanzania and Kenya, respectively. Potential impact of the changes between climate scenarios 2013 and 2055 was assessed. The data files included in this database were utilized for the above analysis to develop temperature dependent phenology of Plutella xylostella to assess current and future distribution along eastern African Afromontanes.
Resumo:
Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but also revealed uncertainties about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors like sea surface temperature (SST), salinity and nutrient concentrations. Previous cultivation efforts indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified in the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices in surface sediments show no relationship with annual mean SST of the overlying water. It remains unknown what determines the DSI, although our data suggests that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions of algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have previously been applied as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
A quantitative study of late Cenozoic silicoflagellates from the northwestern Pacific sites of Deep Sea Drilling Project Leg 86 shows a relative paleotemperature (Ts) gradient with lowest values (Ts = 30) in the north. Some new ecostratigraphic relations for the region are indicated, such as the last common occurrence of Dictyocha brevispina at 2.6 - 3.0 m.y. ago during a cool interval. Elements of North Pacific and low-latitude biostratigraphic zonations can be identified, but the mixing of cool- and warm-indicator taxa prompted the definition of the new Miocene Mesocena hexalitha Subzone and Pliocene Distephanus jimlingii Subzone. Scanning-electron microscope study of Leg 86 silicoflagellates was done to determine whether various types of skeletal surface texture are temperature dependent. To conduct the study we organized a new surface-texture descriptive code, which characterizes the apical structure/basal ring/spine sequence using new definitions of the terms crenulate (C), linear (L), nodular (N), reticulate (R), and smooth (S). One new silicoflagellate genus, Caryocha Bukry et Monechi, n. gen., is described and several new combinations are made.
Resumo:
Abundance records of planktonic foraminifera (>150 µm) from the upper 520 m of ODP Site 1073 (Hole 1073A, Leg 174A, 639 m water depth) have been integrated with SPECMAP-derived isotope stratigraphy, percentage of calcium carbonate, and coarse sediment fraction data in order to investigate the Pleistocene climatic history of the New Jersey margin. Six planktonic taxonomic groups dominate the foraminiferal assemblage at Site 1073: Neogloboquadrina pachyderma (d) (mean 33.8%), Turborotalita quinqueloba (18.5%), N. pachyderma (s) (18.4%), Globigerina bulloides group (11.4%), Globorotalia inflata group (9.4%), and Globigerinita glutinata (4.1%). Based on the distributions of these six foraminiferal groups, the Pleistocene section can be divided into three paleoclimatic intervals: Interval I (intermediate) corresponds to the Quaternary sediments from sequence boundary pp1 to the seafloor (79.5-0 mbsf; Emiliania huxleyi acme [85 ka] at 72 mbsf); Interval II (warm) occurs between sequence boundaries pp3 and pp1 (325-79.5 mbsf; last occurrence of Pseudoemiliania lacunosa [460 ka] at 330 mbsf); and Interval III (coldest) occurs between sequence boundaries pp4 and pp3 (520-325 mbsf; Calcareous nannofossils and dinocysts in proximity to pp4 indicate that the sedimentary record for 0.9-1.7 Ma is either missing altogether or highly condensed within the basal few meters of the section). Neogloboquadrina pachyderma (d) displays eight peaks of abundance which correlate, for the most part, with depleted delta18O values, increases in calcium carbonate percentages, low coarse fraction percentages, increased planktonic fragmentation (greater dissolution), and low N. pachyderma (s) abundances. These intervals are interpreted as representing warmer/interglacial conditions. Neogloboquadrina pachyderma (s) displays seven peaks of abundance which correlate, for the most part, with delta18O increases, decreases in calcium carbonate percentages, increases in coarse fraction percentages, and low N. pachyderma (d) abundances. These intervals are interpreted as representing cooler/glacial conditions. In Interval III, a faunal response to relative changes in sea-surface temperature is reflected by abundance peaks in Neogloboquadrina pachyderma (d), followed by Turborotalita quinqueloba and then N. pachyderma (s) (proceeding from warmest to coolest, respectively). This tripartite response is consistent with the oxygen isotope record and, although not as clear, also occurs in Intervals I and II. Six peaks/peak intervals of Globigerina bulloides abundance are closely matched by peaks in Globigerinita glutinata and occur within oxygen isotope stage (OIS) 2 (latter part) 3, 4, 5, 8, 9, 13(?), 14(?), and 15(?). We speculate that these intervals reflect increased upwelling and nutrient levels during both glacials and interglacials. Eight peak intervals of Globorotalia inflata show a general inverse correlation with G. bulloides and may reflect lowered nutrient and warmer surface waters.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Temperature and salinity reconstruction for the Last Interglacial Period in the North Atlantic Ocean
Resumo:
Eight deep-sea sediment cores from the North Atlantic Ocean ranging from 31° to 72°N are studied to reconstruct the meridional gradients in surface hydrographic conditions during the interval of minimum ice volume within the last interglacial period. Using benthic foraminiferal ?18O measurements and estimates of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), we show that summer SSTs and SSSs decreased gradually during the interval of minimum ice volume at high-latitude sites (52°-72°N) whereas they were stable or increased during the same time period at low-latitude sites (31°-41°N). This increase in meridional gradients of SSTs and SSSs may have been due to changes in the latitudinal distribution of summer and annual-average insolation and associated oceanic and atmospheric feedbacks. These trends documented for the Eemian ice volume minimum period are similar to corresponding changes observed during the Holocene and may have had a similar origin.
Resumo:
During the International ICES Expedition "Overflow '73" a total of 174 samples from 18 stations were collected by R. V. "Meteor" in the waters of the Iceland-Faroe Ridge area. They were filtered on board ship (through 0.4 mym "Nuclepore" filters), then stored in 500 cm**3 quartz bottles (at -20 °C) and analyzed in air-filtered laboratories on land for zinc and cadmium by means of the differential pulse anodic stripping voltammetry technique and copper and iron by flameless atomic absorption spectrometry. The overall averages of 1.9 myg Zn l**-1, 0.07 myg Cd l**-1, 0.5 myg Cu l**-1 and 0.9 myg Fe l**-1 are in good agreement with recent "baseline" studies of open-ocean waters. The mixture of low salinity water masses from the North Iceland Shelf/Arctic Intermediate Waters seem to maintain distinctly lower concentration of Cd, Cu and Fe than the waters from the North Atlantic and the Norwegian Sea where quite similar mean values are found. There is only little evidence for the assumption that overflow events on the ridge are influencing the concentrations of dissolved metals in the near-bottom layers.
Resumo:
Hydrology, source region, and timing of precipitation are important controls on the climate of the Great Plains of North America and the composition of terrestrial ecosystems. Moisture delivered to the Great Plains varies seasonally and predominately derives from the Gulf of Mexico/Atlantic Ocean with minor contributions from the Pacific Ocean and Arctic region. For this work, we evaluate long-term relationships for the past ~ 35 million years between North American hydrology, climate, and floral change, using isotopic records and average carbon chain lengths of higher plant n-alkanes from Gulf of Mexico sediments (DSDP Site 94). We find that carbon isotope values (d13C) of n-alkanes, corrected for variations in the d13C value of atmospheric CO2, provide minor evidence for contributions of C4 plants prior to the Middle Miocene. A sharp spike in C4 input is identified during the Middle Miocene Climatic Optimum, and the influence of C4 plants steadily increased during the Late Miocene into the Pleistocene - consistent with other North American records. Chain-length distributions of n-alkanes, indicative of the composition of higher plant communities, remained remarkably constant from 33 to 4 Ma. However, a trend toward longer chain lengths occurred during the past 4 million years, concurrent with an increase in d13C values, indicating increased C4 plant influence and potentially aridity. The hydrogen isotope values (dD) of n-alkanes are relatively invariant between 33 and 9 Ma, and then become substantially more negative (75 per mil) from 9 to 2 Ma. Changes in the plant community and temperature of precipitation can solely account for the observed variations in dD from 33 to 5 Ma, but cannot account for Plio-Pleistocene dD variations and imply substantial changes in the source region of precipitation and seasonality of moisture delivery. We posit that hydrological changes were linked to tectonic and oceanographic processes including the shoaling and closure of the Panamanian Seaway, amplification of North Atlantic Deep Water Production and an associated increase of meridional winds. The southerly movement of the Intertropical Convergence Zone near 4 Ma allowed for the development of a near-modern pressure/storm track system, driving increased aridity and changes in seasonality within the North American interior.
Resumo:
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) - despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.