876 resultados para Teaching performance on-line
Resumo:
This study aimed to assess the performance of International Caries Detection and Assessment System (ICDAS), radiographic examination, and fluorescence-based methods for detecting occlusal caries in primary teeth. One occlusal site on each of 79 primary molars was assessed twice by two examiners using ICDAS, bitewing radiography (BW), DIAGNOdent 2095 (LF), DIAGNOdent 2190 (LFpen), and VistaProof fluorescence camera (FC). The teeth were histologically prepared and assessed for caries extent. Optimal cutoff limits were calculated for LF, LFpen, and FC. At the D (1) threshold (enamel and dentin lesions), ICDAS and FC presented higher sensitivity values (0.75 and 0.73, respectively), while BW showed higher specificity (1.00). At the D (2) threshold (inner enamel and dentin lesions), ICDAS presented higher sensitivity (0.83) and statistically significantly lower specificity (0.70). At the D(3) threshold (dentin lesions), LFpen and FC showed higher sensitivity (1.00 and 0.91, respectively), while higher specificity was presented by FC (0.95), ICDAS (0.94), BW (0.94), and LF (0.92). The area under the receiver operating characteristic (ROC) curve (Az) varied from 0.780 (BW) to 0.941 (LF). Spearman correlation coefficients with histology were 0.72 (ICDAS), 0.64 (BW), 0.71 (LF), 0.65 (LFpen), and 0.74 (FC). Inter- and intraexaminer intraclass correlation values varied from 0.772 to 0.963 and unweighted kappa values ranged from 0.462 to 0.750. In conclusion, ICDAS and FC exhibited better accuracy in detecting enamel and dentin caries lesions, whereas ICDAS, LF, LFpen, and FC were more appropriate for detecting dentin lesions on occlusal surfaces in primary teeth, with no statistically significant difference among them. All methods presented good to excellent reproducibility.
Resumo:
The present study investigated the relationship between psychometric intelligence and temporal resolution power (TRP) as simultaneously assessed by auditory and visual psychophysical timing tasks. In addition, three different theoretical models of the functional relationship between TRP and psychometric intelligence as assessed by means of the Adaptive Matrices Test (AMT) were developed. To test the validity of these models, structural equation modeling was applied. Empirical data supported a hierarchical model that assumed auditory and visual modality-specific temporal processing at a first level and amodal temporal processing at a second level. This second-order latent variable was substantially correlated with psychometric intelligence. Therefore, the relationship between psychometric intelligence and psychophysical timing performance can be explained best by a hierarchical model of temporal information processing.