946 resultados para Teaching 1st Order Equation
Resumo:
Regions containing internal boundaries such as composite materials arise in many applications.We consider a situation of a layered domain in IR3 containing a nite number of bounded cavities. The model is stationary heat transfer given by the Laplace equation with piecewise constant conductivity. The heat ux (a Neumann condition) is imposed on the bottom of the layered region and various boundary conditions are imposed on the cavities. The usual transmission (interface) conditions are satised at the interface layer, that is continuity of the solution and its normal derivative. To eciently calculate the stationary temperature eld in the semi-innite region, we employ a Green's matrix technique and reduce the problem to boundary integral equations (weakly singular) over the bounded surfaces of the cavities. For the numerical solution of these integral equations, we use Wienert's approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a fully discrete projection method with super-algebraic convergence order is proposed. A proof of an error estimate for the approximation is given as well. Numerical examples are presented that further highlights the eciency and accuracy of the proposed method.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
The merits of various numerical methods for the solution of the one and two dimensional heat conduction equation with a radiation boundary condition have been examined from a practical standpoint in order to determine accuracies and efficiencies. It is found that the use of five increments to approximate the space derivatives gives sufficiently accurate results provided the time step is not too large; further, the implicit backward difference method of Liebmann (27) is found to be the most accurate method. On this basis, a new implicit method is proposed for the solution of the three-dimensional heat conduction equation with radiation boundary conditions. The accuracies of the integral and analogue computer methods are also investigated.
Resumo:
In this letter we present a technique for the implementation of Nth-order ultrafast temporal differentiators. This technique is based on two oppositely chirped fiber Bragg gratings in which the grating profile maps the spectral response of the Nth-order differentiator. Examples of 1st, 2nd, and 4th order differentiators are designed and numerically simulated.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.
Resumo:
This thesis examines the main aim of teaching pronunciation in second language acquisition in the Syrian context. In other words, it investigates the desirable end point, namely: whether it is native-like accent, or intelligible pronunciation. This thesis also investigates the factors that affect native-like pronunciation and intelligible accent. It also analyses English language teaching methods. The currently used English pronunciation course is examined in detail too. The aim is to find out the learners’ aim of pronunciation, the best teaching method for achieving that aim, and the most appropriate course book that fulfils the aim. In order to find out learners’ aim in pronunciation, a qualitative research is undertaken. The research takes advantage of some aspects of case study. It is also supported by a questionnaire to gather data. The result of this research can be regarded as an attempt to bring the Syrian context to the current trends in the teaching of English pronunciation. The results show that learners are satisfied with intelligible pronunciation. The currently used teaching method (grammar-translation method) may be better replaced by the (communicative approach) which is more appropriate than the currently used method. It is also more effective to change the currently used book to a new one that corresponds to that aim. The current theories and issues in teaching English pronunciation that support learners’ intelligibility will be taken into account in the newly proposed course book.
Resumo:
The influence of birth order on personality and sibling rivalry is controversial; little research has been conducted into academic sibling rivalry, and none into the connection with personality traits. This study considers the interaction of all three factors. Firstborns (N=22) and lastborns (N=24) completed online personality tests and an Academic Sibling Rivalry Questionnaire. Lastborns were found to experience more academic sibling rivalry: t=2.33, DF=44; p less than 0.05, whereas firstborns are more likely to be conscientious: F(1,44)=3.58; p less than 0.05, and dutiful: F(1,44)=5.39; p less than 0.05. This raises possible implications in domains including education, health and psychotherapy. Further research could be conducted to expand these findings in terms of variables and geographical location. (Contains 2 figures.)
Resumo:
Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.
Resumo:
Oscillation criteria are given for the second order sublinear non-autonomous differential equation. (r(t) (x)x′(t))′ + q(t)g(x(t)) = (t). These criteria extends and improves earlier oscillation criteria of Kamenev, Kura, Philos and Wong. Oscillation criteria are also given for second order sublinear damped non-autonomous differential equations.
Resumo:
The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37