963 resultados para TURBULENT-FLOW


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although small-scale spatial flow variability can affect both larger-scale circulation patterns and biological processes on coral reefs, there are few direct measurements of spatial flow patterns across horizontal scales <100 m. Here flow patterns on a shallow reef flat were measured at scales from a single colony to several adjacent colonies using an array of acoustic Doppler velocimeters on a diver-operated traverse. We observed recirculation zones immediately behind colonies, reduced currents and elevated dissipation rates in turbulent wakes up to 2 colony diameters downstream and enhanced Reynolds stresses in shear layers around wake peripheries. Flow acceleration zones were observed above and between colonies. Coherent flow structures varied with incident flow speeds; recirculation zones were stronger and wakes were more turbulent in faster flows. Low-frequency (<0.03 Hz) flow variations, for which water excursions were large compared with the colony diameters (Keulegan-Carpenter number, KC >1), had similarspatial patterns to wakes, while higher-frequency variations (0.05-0.1 Hz, KC<1) had no observable spatial structure. On the reef flat, both drag and inertial forces exerted by coral colonies could have significant effects on flow, but within different frequency ranges; drag dominates for low-frequency flow variations and inertial forces dominate for higher frequency variations, including the wave band. Our scaling analyses suggest that spatial flow patterns at colony and patch scales could have important implications or both physical and biological processes at larger reef scales through their effects on forces exerted on the flow, turbulent mixing, and dispersion. © 2013. American Geophysical Union. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) is gradually becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However the mathematical modelling of the erratic turbulent motion remains the key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt changes in the turbulent energy and other parameters situated at near wall regions a particularly fine mesh is necessary which inevitably increases the computer storage and run-time requirements. Turbulence modelling can be considered to be one of the three key elements in CFD. Precise mathematical theories have evolved for the other two key elements, grid generation and algorithm development. The principal objective of turbulence modelling is to enhance computational procedures of efficient accuracy to reproduce the main structures of three dimensional fluid flows. The flow within an electronic system can be characterized as being in a transitional state due to the low velocities and relatively small dimensions encountered. This paper presents simulated CFD results for an investigation into the predictive capability of turbulence models when considering both fluid flow and heat transfer phenomena. Also a new two-layer hybrid kε / kl turbulence model for electronic application areas will be presented which holds the advantages of being cheap in terms of the computational mesh required and is also economical with regards to run-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prediction of the pressure drop for turbulent single-phase fluid flow around sharp 90° bends is difficult owing to the complexity of the flow arising from frictional and separation effects. Several empirical equations exist, which accurately predict the pressure loss due to frictional effects. More recently, Crawford et al. [1] proposed an equation for the prediction of pressure loss due to separation of the flow. This work proposes a new composite equation for the prediction of pressure drop due to separation of the flow, which incorporates bends with ratio R/r <2. A new composite equation is proposed to predict pressure losses over the Reynolds number range 4 x 103-3 x 105. The predictions from the new equation are within a range of -4 to +6 per cent of existing experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the implementation of Menter's gamma-Re-theta Transition Model within the CFX12 solver for turbulent transition prediction on a natural laminar flow nacelle. Some challenges associated with this type of modeling have been identified. The computational fluid dynamics transitional flow simulation results are presented for a series of cruise cases with freestream Mach numbers ranging from 0.8 to 0.88, angles of attack from 2 to 0 degrees, and mass flow ratios from 0.60 to 0.75. These were validated with a series of wind-tunnel tests on the nacelle by comparing the predicted and experimental surface pressure distributions and transition locations. A selection of the validation cases are presented in this paper. In all cases, computational fluid dynamics simulations agreed reasonably well with the experiments. The results indicate that Menter's gamma-Re-theta Transition Model is capable of predicting laminar boundary-layer transition to turbulence on a nacelle. Nonetheless, some limitations exist in both the Menter's gamma-Re-theta Transition Model and in the implementation of the computational fluid dynamics model. The implementation of a more comprehensive experimental correlation in Menter's gamma-Re-theta Transition Model, preferably the ones from nacelle experiments, including the effects of compressibility and streamline curvature, is necessary for an accurate transitional flow simulation on a nacelle. In addition, improvements to the computational fluid dynamics model are also suggested, including the consideration of varying distributed surface roughness and an appropriate empirical correction derived from nacelle experimental transition location data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hypersonic flight, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling of gas turbine engines, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt-nosed spacecraft flying at Mach number 6.56 and 40 deg angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. The computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hypersonic flights, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling gas turbine engine, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt nosed spacecraft flying at Mach number 6.56 and 40 degree angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. Computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared each other. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsteady heat transfer in a turbine blade film cooling flow is studied using detached eddy simulation (DES). Detailed computation of a single row of 35 degree round holes on a flat plate has been obtained for a blowing ratio of 1.0 and a density ratio of 2.0. The instantaneous flow fields and heat transfer distributions are found to be highly unsteady and oscillatory in nature. The fluctuation of the adiabatic effectiveness and heat transfer coefficient, for example, can be as high as 15 and 50 percent of the time-averaged value, respectively. The correlation between the coherent vortical structures and the unsteady heat transfer is carefully examined. It is shown that the fluctuations in the adiabatic effectiveness and heat transfer coefficient are mainly caused by the spanwise fluctuation of the coolant jet and the thermal turbulent boundary layer accompanying the unsteady flow structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study measuring the performance and wake characteristics of a 1:10th scale horizontal axis turbine in steady uniform flow conditions is presented in this paper.
Large scale towing tests conducted in a lake were devised to model the performance of the tidal turbine and measure the wake produced. As a simplification of the marine environment, towing the turbine in a lake provides approximately steady, uniform inflow conditions. A 16m long x 6m wide catamaran was constructed for the test programme. This doubled as a towing rig and flow measurement platform, providing a fixed frame of reference for measurements in the wake of a horizontal axis tidal turbine. Velocity mapping was conducted using Acoustic Doppler Velocimeters.
The results indicate varying the inflow speed yielded little difference in the efficiency of the turbine or the wake velocity deficit characteristics provided the same tip speed ratio is used. Increasing the inflow velocity from 0.9 m/s to 1.2 m/s influenced the turbulent wake characteristics more markedly. The results also demonstrate that the flow field in the wake of a horizontal axis tidal turbine is strongly affected by the turbine support structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsteady coherent structures and turbulent heat transfer in a film cooling flow is studied by using detached eddy simulation (DES). Detailed computations for an inclined jet in crossflow by a single row of 35 degree round holes on a flat plate were performed at blowing ratios of 0.5 and 1.0, and a density ratio of 2.0. The correlation between the coherent vortical structures and the unsteady heat transfer is carefully examined. The instantaneous flow fields and heat transfer distributions are found to be characterized by the formation of large coherent vortical structures. These structures enhance the thermal mixing process and turbulent heat transfer to the wall. From the inspection of both unsteady adiabatic film cooling effectiveness and heat transfer coefficient, these two are found to have substantial local fluctuations due to the large unsteadiness of coherent structures. The fluctuation of the adiabatic effectiveness and heat transfer coefficient, for example, can be as high as 15 and 50 percent of the time-mean value, respectively. It could result in the detrimental effect on film cooling performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a novel numerical method at unprecedented resolution, we demonstrate that structures of small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such flows are characterized by vortices (spinning volumes of fluid), regions of large vorticity gradients, and filamentary structures at all scales. It is found that such structures have predominantly three-dimensional dynamics below a horizontal scale LLR, where LR is the so-called Rossby radius of deformation, equal to the characteristic vertical scale of the fluid H divided by the ratio of the rotational and buoyancy frequencies f/N. The breakdown of two-dimensional dynamics at these scales is attributed to the so-called "tall-column instability" [D. G. Dritschel and M. de la Torre Juárez, J. Fluid. Mech. 328, 129 (1996)], which is active on columnar vortices that are tall after scaling by f/N, or, equivalently, that are narrow compared with LR. Moreover, this instability eventually leads to a simple relationship between typical vertical and horizontal scales: for each vertical wave number (apart from the vertically averaged, barotropic component of the flow) the average horizontal wave number is equal to f/N times the vertical wave number. The practical implication is that three-dimensional modeling is essential to capture the behavior of rotating, stratified fluids. Two-dimensional models are not valid for scales below LR. ©1999 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m−2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.