884 resultados para TREATED SEWAGE EFFLUENT
Resumo:
OBJECTIVE: To compare the regression of left ventricular hypertrophy in patients with moderate hypertension treated with enalapril, losartan or a combination of the two drugs at lower doses. METHODS: Patients of both sexes with moderate hypertension confirmed by ambulatory monitoring of arte-rial blood pressure and with left ventricular hypertrophy on echocardiogram were assigned to three groups: enalapril (35 mg/day, n=15), losartan (175 mg/day, n=15) and enalapril+losartan (15 mg+100 mg/day, n=16). The patients received the drugs for 10 months. RESULTS: The three therapeutic regimens were equally effective in reducing blood pressure and left ventricular mass index (LVMI, g/m²): 141±3.9 to 123±3.6 in the enalapril group (p<0.05), from 147±3.8 to 133±2.8 in the losartan group (p<0.05), and from 146±3.0 to 116±4.0 in the enalapril+losartan group (p<0.05). However, the percent reduction of LVMI was significantly greater (p<0.01) in the enalapril+losartan group (20.5±5.0%) than in enalapril (12.4±3.2%) and the losartan (9.1±2.1%) groups. Normalization of LVMI was obtained in 10 out of the 16 patients who received enalapril+ losartan, in 6 out of the 15 patients who received only enalapril and in 4 out of the 15 patients treated with losartan. CONCLUSION: The combination of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist (AT1 receptor antagonist) in patients produced an additional effect on the reduction of left ventricular hypertrophy. This finding may depend on a more complete inhibition of the cardiac renin-angiotensin.
Resumo:
Sludge provides valuable nutrients to soil. Application of sludge to land is subject to a number of limitations. Its use as a soil conditioner represents a "beneficial reuse option". Primary and secondary sludge from Dublin city is treated in Ringsend treatment plant where it undergoes thermal drying. This study investigates the feasibility of land application of thermally dried biosolids (TDB) from Ringsend treatment plant.
Resumo:
This Study assessed the development of sludge treatment and reuse policy since the original 1993 National Sludge Strategy Report (Weston-FTA, 1993). A review of the 48 sludge treatment centres, current wastewater treatment systems and current or planned sludge treatment and reuse systems was carried out Sludges from all Regional Sludge Treatment Centres (areas) were characterised through analysis of selected parameters. There have been many changes to the original policy, as a result of boundary reviews, delays in developing sludge management plans, development in technology and changes in tendering policy, most notably a move to design-build-operate (DBO) projects. As a result, there are now 35 designated Hub Centres. Only 5 of the Hub Centres are producing Class A Biosolids. These are Ringsend, Killamey, Carlow, Navan and Osberstown. Ringsend is the only Hub Centre that is fully operational, treating sludge from surrounding regions by Thermal Drying. Killamey is producing Class A Biosolids using Autothermal Thermophilic Aerobic Digestion (ATAD) but is not, as yet, treating imported sludge. The remaining three plants are producing Class A Biosolids using Alkaline Stabilisation. Anaerobic Digestion with post pasteurisation is the most common form of sludge treatment, with 11 Hub Centres proposing to use it. One plant is using ATAD, two intend to use Alkaline Stabilisation, seven have selected Thermal Drying and three have selected Composting. While the remaining plants have not decided which sludge treatment to select, this is because of incomplete Sludge Management Plans and on DBO contracts. Analysis of sludges from the Hub Centres showed that all Irish sewage sludge is safe for agricultural reuse as defined by the Waste Management Regulations {Use of Sewage Sludge in Agriculture) (S.I. 267/2001), providing that a nutrient management plan is taken into consideration and that the soil limits of the 1998 (S.I. 148/1998) Waste Management Regulations are not exceeded.
The appraisal of anaerobic digestion in Ireland to develop improved designs and operational practice
Resumo:
Mesophilic Anaerobic Digestion treating sewage sludge was investigated at five full-scale sewage treatment plants in Ireland. The anaerobic digestion plants are compared and evaluated in terms of design, equipment, operation, monitoring and management. All digesters are cylindrical, gas mixed and heated Continuously Stirred Tank Reactors (CSTR), varying in size from 130m3 to 800m3. Heat exchanger systems heat all digesters. Three plants reported difficulties with the heating systems ranging from blockages to insufficient insulation and design. Exchangers were modified and replaced within one year of operation at two plants. All but one plant had Combined Heat and Power (CHP) systems installed. Parameter monitoring is a problem at all plants mainly due to a lack of staff and knowledge. The plant operators consider pH and temperature the most important parameters to be measured in terms of successful monitoring of an anaerobic digester. The short time taken and the ease at which pH and temperature can be measured may favour these parameters. Three laboratory scale pilot anaerobic digesters were operated using a variety of feeds over at 144-day period. Two of the pilots were unmixed and the third was mechanically mixed. As expected the unmixed reactors removed more COD by retention of solids in the digesters but also produced greater quantities of biogas than the mixed digester, especially when low solids feed such as whey was used. The mixed digester broke down more solids due to the superior contact between the substrate and the biomass. All three reactors showed good performance results for whey and sewage solids. Scum formation occurred giving operational problems for mixed and unmixed reactors when cattle slurry was used as the main feed source. The pilot test was also used to investigate which parameters were the best indicators of process instability. These trials clearly indicated that total Volatile Fatty Acid (VFA) concentrations was the best parameter to show signs of early process imbalance, while methane composition in the biogas was good to indicate possible nutrient deficiencies in the feed and oxygen shocks. pH was found to be a good process parameter only if the wastewater being treated produced low bicarbonate alkalinities during treatment.
Resumo:
The overall purpose of this study was to develop a thorough inspection regime for onsite wastewater treatment systems, which is practical and could be implemented on all site conditions across the country. With approximately 450,000 onsite wastewater treatment systems in Ireland a risk based methodology is required for site selection. This type of approach will identify the areas with the highest potential risk to human health and the environment and these sites should be inspected first. In order to gain the required knowledge to develop an inspection regime in-depth and extensive research was earned out. The following areas of pertinent interest were examined and reviewed, history of domestic wastewater treatment, relevant wastewater legislation and guidance documents and potential detrimental impacts. Analysis of a questionnaire from a prior study, which assessed the resources available and the types of inspections currently undertaken by Local authorities was carried out. In addition to the analysis of the questionnaire results, interviews were carried out with several experts involved in the area of domestic wastewater treatment. The interview focussed on twelve key questions which were directed towards the expert’s opinions on the vital aspects of developing an inspection regime. The background research, combined with the questionnaire analysis and information from the interviews provided a solid foundation for the development of an inspection regime. Chapter 8 outlines the inspection regime which has been developed for this study. The inspection regime includes a desktop study, consultation with the homeowners, visual site inspection, non-invasive site tests, and inspection of the treatment systems. The general opinion from the interviews carried out, was that a standardised approach for the inspections was necessary. For this reason an inspection form was produced which provides a standard systematic approach for inspectors to follow. This form is displayed in Appendix 3. The development of a risk based methodology for site selection was discussed and a procedure similar in approach to the Geological Survey of Irelands Groundwater Protection Schemes was proposed. The EPA is currently developing a risk based methodology, but it is not available to the general public yet. However, the EPA provided a copy of a paper outlining the key aspects of their methodology. The methodology will use risk maps which take account of the following parameters: housing density, areas with inadequate soil conditions, risk of water pollution through surface and subsurface pathways. Sites identified with having the highest potential risk to human health and the environment shall be inspected first. Based on the research carried out a number of recommendations were made which are outlined in Chapter 10. The principle conclusion was that, if these systems fail to operate satisfactorily, home owners need to understand that these systems dispose of the effluent to the 'ground' and the effluent becomes part of the hydrological cycle; therefore, they are a potential hazard to the environment and human health. It is the owners, their families and their neighbours who will be at most immediate risk.
Resumo:
This research, deals with the effects of exogenous growth regulators on infection by microorganisms on soybean (Glycine max cv. Davis) seeds. To study the influence of the chemicals, soybean plants were sprayed with gibberellic acid (GA) 100 ppm, (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm, succinic acid-2,2-dimethy1hydrazide (SADH) 4,000 ppm, indolylacetic acid (IAA) 100 ppm, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm (three applications), and Agrostemin (1g/10 ml/ 3 1). Application of growth regulators did not affect infect ion by microorganisms on soybean seeds. The prominent fungus isolated was Phomopsis sojae. Alternaria and Fusarium spp. were isolated from seeds. The presence of a bacterium on the seeds was observed. The delay in harvest and high humidity increased the number of seeds from which Phomopsis was recovered.
Resumo:
The effects of growth retardants on infestation by Potyphagotarsonemus tatus (broad mite) on cotton (Gossypium hirsutum L. cv. IAC-17) plants was studied. Cotton plants were sprayed with (2-ch1oroethy1) trimethylammonium chloride (CCC) 250, 350 and 450 ppm, and with 1,1-dimethyl-piperidinium chloride (Pix) at concentrations of 84, 167 and 250 ppm. Growth retardants did not give effective control of Potyphagotarsone mus tatus but application of Pix 167 ppm showed a tendency to reduce mite attack.
Resumo:
The effects of high pressure on the composition of food products have not been evaluated extensively. Since, it is necessary to take in consideration the possible effects in basis to the changes induced in the bio molecules by the application of high pressures. The main effect on protein is the denaturation, because the covalent bonds are not affected; however hydrogen bonding, hydrophobic and intermolecular interactions are modified or destroyed. 1 High pressure can modify the activity of some enzymes. If this is done the proteolysis and lipolysis could be more or less intense and the content of free amino acids and fatty acids will be different. This could be related to the bioavailability of these compounds. Low pressures (100 MPa) have been shown to activate some enzymes (monomeric enzymes). Higher pressures induce loss of the enzyme activity. However some enzymes are very stable (ex. Lipase ~ 600 - 1000 MPa). Lipoxygenase is less stable, and there is little information about the effects on antioxidant enzymes. Other important issue is the influence of high pressure on oxidation susceptibility. This could modify the composition of lipids if the degree of the oxidation would have been higher or lower than in the traditional product. Pressure produces the damage of cell membranes favouring the contact between substrates and enzymes, exposure to oxidation of membrane fatty acids and loos of the efficiency of vitamin E. These effects can also affect to protein oxidation. In this study different compounds were analysed to establish the differences between non-treated and high-pressure treated products.
Resumo:
Mice treated with hyperchlorinated water (50 ppm of chlorine) and control mice, drinking tap water (1-3 ppm of chlorine) were inoculated with 2.5 x 10 [raised to the power of 6] sarcoma 180 cells, by intraperitoneal route. Tumor evolution was measured by enumeration of tumor cells in peritoneal cavity and by evaluation of weight gain at different time intervals after tumor implantation. In mice treated with excessive amounts of chlorine there was enhancement of tumor growth demonstrated by: (a) shorter incubation period and increased weight gain (ascites formation) after tumor implantation; (b) increased number of tumor cells in the peritoneal cavity 2, 3 and 4 days after tumor challenge. The number of peritoneal cells exsudated after tumor implantation was lower in mice treated with hyperchlorinated water than in controls. The tumor enhancement observed after excessive chlorine ingestion would be due to: (a) reduction of the number of peritoneal macrophages that migrate to the peritoneal cavity and (b) reduction of the tumoricidal capacity of peritonela macrophages induced by the direct effect of chlorine or by the reduction of the amount of endogenous endotoxins due to the bactericidal effect of chlorine.
Resumo:
An assessment of sewage workers' exposure to airborne cultivable bacteria, fungi and inhaled endotoxins was performed at 11 sewage treatment plants. We sampled the enclosed and unenclosed treatment areas in each plant and evaluated the influence of seasons (summer and winter) on bioaerosol levels. We also measured personal exposure to endotoxins of workers during special operation where a higher risk of bioaerosol inhalation was assumed. Results show that only fungi are present in significantly higher concentrations in summer than in winter (2331 +/- 858 versus 329 +/- 95 CFU m(-3)). We also found that there are significantly more bacteria in the enclosed area, near the particle grids for incoming water, than in the unenclosed area near the aeration basins (9455 +/- 2661 versus 2435 +/- 985 CFU m(-3) in summer and 11 081 +/- 2299 versus 2002 +/- 839 CFU m(-3) in winter). All bioaerosols were frequently above the recommended values of occupational exposure. Workers carrying out special tasks such as cleaning tanks were exposed to very high levels of endotoxins (up to 500 EU m(-3)) compared to routine work. The species composition and concentration of airborne Gram-negative bacteria were also studied. A broad spectrum of different species within the Pseudomonadaceae and the Enterobacteriaceae families were predominant in nearly all plants investigated. [Authors]